OGRANO

Omponeﬂt as® 5“ g_NTO‘H

WANIE

es\\t\

Marek BranceW|cz

- 3>
‘ ol brancewmz@uwb edu.pl
” .-""
"’ "l'l" '.

7 {%’\NY DZIAL FIZYKI

UNIWERSYTET W BIALYMSTOKU

-

https://pl.freepik.com 2025.12.18

mailto:m.brancewicz@uwb.edu.pl

WYKLAD

1

(01.10.2025)

WPROWADZENIE

Organizacja zajec, zasady oceniania
Literatura, kursy on-line, zasady korzystania z Al
Podstawowe pojecia

Oprogramowanie (MinGw, CodeBlocks)

a > o bh -~

Praca w terminalu (Linux)

HARMONOGRAM WYKLADOW

Wyktad Data

1 01.10.2025

2 15.10.2025

3 29.10.2025

4 26.11.2025

5 10.12.2025

6 21.01.2026
7 04.02.2026

Tematy

Wprowadzenie. Podstawowe pojecia. Oprogramowanie. Praca w terminalu Linux’a
(lub wierszu polecen Windows). Pierwszy program. Podstawowe typy zmiennych.
Wczytywanie danych z klawiatury i wypisywanie ich na ekranie (strumien wejscia-
wyjscia). Instrukcja warunkowa ,,if".

Petle (for, while, do ... while). Liczby pseudolosowe. Instrukcja wielokrotnego wyboru
~Switch-case”. Pomiar czasu wykonywania programu.

Tablice. Zapisywanie do i czytanie z pliku tekstowego. Ztozone typy danych 1
(string).

Funkcje (definicja, struktura, przyktady, przekazywanie tablic do funkcji, wartosci
domysine parametrow funkcji, przecigzanie funkcji, sufiksy danych, przestanianie
zmiennych). Rekurencja (rekursja).

Wskazniki. Pojecie stosu i sterty (stack & heap). Dynamiczna alokacja pamieci.
Tablice alokowane dynamicznie. Arytmetyka wskaznikow (inkrementacja i
dekrementacja). Dynamiczna alokacja tablic wielowymiarowych.

Ztozone typy danych 2 (struktura).

LIERATURA (PL & ENG)

1] kursy on-line

2] modele jezykowe Al

[3] W. Porebski, Jezyk C++ : wprowadzenie do programowania, wyd.
2, Komputerowa Oficyna Wydawnicza "Help", Warszawa 1999

[4] J. Grebosz, Symfonia C ++ standard : programowanie w jezyku
C++ orientowane obiektowo, Wydawnictwo "Edition 2000" :

Oficyna Kallimach, Krakow 2005

5] S. Prata, Jezyk C++, wyd. 5, Wydawnictwo Helion, Gliwice 2006

6] A. Koenig, Accelerated C++ : practical programming by example,
22nd printing, Addison-Wesley, Boston 2013

PODSTAWOWE POJECIA

Jezyk programowania Zbior zasad okreslajgcych, kiedy cigg symboli
tworzy program komputerowy oraz jakie obliczenia opisuije.

Program komputerowy Sekwencja symboli opisujgca realizowanie
obliczen zgodnie z pewnymi regutami zwanymi jezykiem programowania.
Program jest zazwyczaj wykonywany przez komputer (np. wyswietlenie strony
internetowej), zwykle bezposrednio, jesli wyrazony jest w jezyku zrozumiatym dla
danej maszyny lub posrednio — gdy jest interpretowany przez inny program
(interpreter). Program moze by¢ ciggiem instrukcji opisujgcych modyfikacje stanu
maszyny, ale moze réwniez opisywac obliczenia w inny sposob (np. rachunek
lambda)

Kod zrodiowy Zapis programu komputerowego przy pomocy okreslonego
jezyka programowania, opisujgcy operacje, jakie powinien wykona¢ komputer na
zgromadzonych lub otrzymanych danych. Kod zrodtowy jest wynikiem pracy
programisty i pozwala wyrazi¢ w czytelnej dla cziowieka formie strukture oraz
dziatanie programu komputerowego. Jest on zwykle zapisywany w pliku
tekstowym.

Kompilator Program stuzacy do automatycznego ttumaczenia kodu napisanego
w jednym jezyku (jezyku zréodtowym) na rownowazny kod w innym jezyku (jezyku
wynikowym). Proces ten nazywany jest kompilacjg. W informatyce kompilatorem
nazywa sie najczesciej program do ttumaczenia kodu zrédiowego w jezyku
programowania na jezyk maszynowy. Niektore z nich ttumaczg najpierw do jezyka
asemblera, a ten na jezyk maszynowy jest ttumaczony przez asembiler.

EZg- 28 B4 FC 28 F¥ &8 El1 3C
ODEDL

===
a4
11T

Jezyk maszynowy
(kod maszynowy)
Zestaw rozkazow procesora, w ktorym zapis

programu wyrazony jest w postaci liczb binarnych
stanowigcych rozkazy oraz ich argumenty.

LT -0

mmm—ar- -
s =C A T

1
Ao iy Lo L LN T T = N]

Lo mMOmMOmOET T

—O—Z==

=TIOmLS =R

Zintegrowane srodowisko programistyczne

(IDE, od ang. integrated development environment) — program Ilub zespot
programow (Srodowisko) stuzgcych do tworzenia, modyfikowania, testowania i
konserwacji oprogramowania.

Interpreter Analizuje kod zrédtowy programu, a przeanalizowane fragmenty
wykonuje. Realizowane jest to w inny sposob niz w procesie kompilacji, podczas
ktdrego nie wykonuje sie wejsciowego programu (kodu zrédtowego), lecz ttumaczy
go do wykonywalnego kodu maszynowego lub kodu posredniego, ktory jest
nastepnie zapisywany do pliku w celu pozniejszego wykonania.

Wykonanie programu za pomocg interpretera jest wolniejsze, a do tego zajmuje
wiecej zasobow systemowych niz wykonanie kodu skompilowanego, lecz moze zajgc
relatywnie mniej czasu niz kompilacja i uruchomienie. Jest to zwtaszcza wazne przy
tworzeniu i testowaniu kodu, kiedy cykl edycja-interpretacja-debugowanie moze
czesto byC znacznie krotszy niz cykl edycja-kompilacja-uruchomienie-debugowanie.

Debugger Program komputerowy stuzacy do dynamicznej analizy innych
programow, w celu odnalezienia i identyfikacji zawartych w nich btedow, zwanych z
angielskiego bugami (robakami). Proces nadzorowania wykonania programu za
pomocg debuggera okresla sie mianem debugowania. Debugger jest standardowym
wyposazeniem wiekszosci wspotczesnych srodowisk programistycznych.

OPROGRAMOWANIE

M MinGW (Minimalist GNU for Windows) — to $rodowisko

programistyczne umozliwiajgce kompilacje kodu zrodtowego w systemie Windows
za pomocg narzedzi GNU, takich jak GCC (GNU Compiler Collection), GDB czy
Make. Dostarcza minimalny zestaw bibliotek i nagtowkow umozliwiajgcych
tworzenie natywnych aplikacji Windows (bez potrzeby uzycia warstwy zgodnosci,
jak Cygwin). MinGW obstuguje jezyki C, C++, Fortran i inne, a jego rozszerzeniem
jest MinGW-w64, wspierajgce zarowno architektury 32-, jak i 64-bitowe.

P‘ Code::Blocks - to darmowe, wieloplatformowe

srodowisko programistyczne (IDE) przeznaczone gtownie do programowania w C,
C++ i Fortranie. Oferuje edytor kodu z podswietlaniem sktadni, debugger, system
projektdéw oraz integracje z popularnymi kompilatorami, takimi jak GCC (MinGW)
czy Clang. Dzieki modutowej budowie (pluginy) mozna je tatwo rozszerza¢ o
dodatkowe funkcije.

PRACA W TERMINALU (LINUX)

Terminal to tekstowy interfejs uzytkownika, ktory wyswietla tekst,
pozwala wpisywac¢ komendy i przekazuje je dalej do powtoki (np. bash).

Bash (Bourne Again SHell) to powtoka systemowa (shell) czyli program
posredniczgcy miedzy uzytkownikiem a jgdrem systemu Linux. W skrocie —

Bash to program, ktory interpretuje (CLI - Command Line Interpreter)
komendy wpisywane w terminalu.

Bash to nie tylko interpreter ale rowniez petnoprawny jezyk skryptowy, w
ktorym sekwencje polecen mozna zapisac do pliku *.sh, (np. run.sh):

#!/bin/bash

A nastepnie nadaé (+) temu skryptowi [hthabsid it LR ClNs - UCUEEES
g++ Mmaln.cpp -0 maln

uprawnienia do wykonywania (x)

) echo "Uruchamiam:"
poleceniem chmod (change mode):

./main

chmod +x run.sh
./run.sh

wykonac skrypt

Podstawy nawigacji w terminalu Linuxa

pwd * wyswietla katalog biezgcy

1s » wysSwietla zawartosc biezgcego katalogu

cd folder * przejscie do katalogu folder

cd .. : - wyj$cie z katalogu ,pietro wyzej”

Saaaa LSRRI « \wySwietla wersje kompilatora g++

gr+ -V » szczegobtowe informacje o Srodowisku kompilaciji

hamianie programu w terminalu

ap i olglelfer [(Be0]oR » kompilacja domysina, tworzy plik

wykonywalny o nazwie a

g++ program.cpp -0 program REEellEloEWalelriLlall=liNelll
wyjsSciowego 0 hazwie program
Jezeli polecenia bedg w skrypcie basha, np. compile.sh:

Sl(CleBE PR eleli[sEMNSN « nadaj skryptowi atrybut wykonywalnosci
./ compile.sh e uruchom skrypt

PRACA W WIERSZU POLECEN (cmd)
lub PowerShell (WINDOWS)

CMD (Command Prompt) to najstarszy i najprostszy odpowiednik
terminala i powtoki w Windows, gdzie skryptami sg pliki tekstowe *.bat lub
*.cmd. Prosty, dostepny ale o dosC ograniczonej funkcjonalnosci i
niekompatybilny z systemami opartymi na poleceniach Unix-a (pierwowzor
Linux-a, Linux jest jego wolng implementacjq).

PowerShell to nowoczesny odpowiednik Bash-a stworzony przez
Microsoft. Terminal: PowerShell Console (albo Windows Terminal),

powtoka: powershell.exe (lub pwsh), skrypty: *.ps1. Jest poteznym
jezykiem skryptowym z obstugg obiektow (nie tylko tekst jak w Bashu). Nie
jest kompatybilny z poleceniami Unix-a i ma mniej zwieztg sktadnie.

Istniejg tzw. emulatory Basha dla Windows, np. Git Bash (niemal petna
zgodnos¢ z Bash) lub WSL (Windows Subsystem for Linux), ktory
zapewnia 100% zgodnosci z Bash-em.

PowerShell Execution Policy

Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned

(najczesciej uzywane przez programistow).

Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass

Wigczenie wykonywania skryptow PowerShell w biezgcej sesji (po zamknieciu
okna wraca do domys$inych ustawien).

Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy Restricted

do domysinych ustawien).

Przewaga terminala nad IDE

1) Pelna kontrola nad kompilacja i linkowaniem. Programista widzi wszystkie
opcje, sam je wybiera i decyduje o wszystkim, ma petna kontrole nad
optymalizacjg, co jest kluczowe dla wydajnosci i przenosnosci kodu, pomaga
zrozumiecC strukture projektu, etapy kompilacji i btedy. IDE ukrywa ten proces co
jest wygodne ale mniej edukacyjne.

2) Automatyzacja i powtarzalnos¢ (Makefile, Bash). W terminalu tatwo tworzy sie
skrypty, ktore automatyzujg budowanie i testowanie aplikacji. Terminalowe skrypty
sa lekkie i przenosne. IDE trzeba konfigurowac recznie na kazdym komputerze.

3) Praca na zdalnych systemach (np. serwery obliczeniowe, HPC). Na klastrach,
superkomputerach, serwerach linuksowych nie ma srodowisk graficznych (GUI).
Tam jedynym sposobem jest terminal (SSH + kompilacja wierszem polecen).
Dlatego naukowcy, inzynierowie i administratorzy systemow muszg umiecC
pracowac¢ w CLI (np.. Bash). Nikt na klastrze obliczeniowym nie uruchamia IDE.

4) Terminal jest szybszy i Izejszy. Nie wymaga graficznego interfejsu, uruchamia
sie natychmiast, nie zuzywa zasobdow systemowych. Dla matych testow lub kroétkich
programow jest po prostu najefektywniejszy.

5) Uniwersalnos¢ i niezaleznos¢ od srodowiska. Skrypty kompilujgce dziatajg
na systemach tam, gdzie czesto nie ma IDE.

PIERWSZY PROGRAM

1. Pierwszy program w C++ ("Hello world")

2. Struktura programu

3. Typy zmiennych, zmienne globalne i lokalne

4. Wczytywanie danych z klawiatury i wypisywanie ich na
ekranie.

Hello, Horvrld_

#include <iostream> // dyrektywy preprocesora,
// tu doigczanie kontenerow wejscia/wyjscia

using namespace std; // przestrzen nazw std

// definicje zmiennych globalnych

int main()

{
cout << "HELLO WORLD!"™ << endl;

return 0; // kod bitedu

Struktura programu

« dyrektywy preprocesora (#), np: dotgczanie kontenerow do
programu (#include <iostream>), definicje statych
(#define grav 9.81)

e using namespace std; (przestrzen nazw)

 definicje zmiennych (globalnych) i statych (np. int x,n;
const float pi=3.1415926;)

e funkcja gtowna (sterujgca) — int main() {}

 return 0; (zwraca kody btedow)

* biate znaki (spacje, entery) sg ignorowane

« kazda linia powinna sie konczyc¢ srednikiem (;) (sg wyjatki)
 komentarze: // (jedna linia) lub /* (poczatek) i */ (koniec)

PODSTAWOWE TYPY ZMIENNYCH

Rozmiar Rozmiar

[B] [B] Zakres
(32 bit) (64 bit)

bool 1 1 prawda (1) albo fatsz (0)

char 1 1 -128 —> 127

unsigned char 1 1 0—> 255

short 2 2 -32 768 —> 32 767

unsigned short 2 2 0 —> 65535

int 4 4 -2 147 483 648 —> 2 147 483 647

unsigned int 4 4 0—>4 294 967 295

long 4 4 -2 147 483 648 —> 2 147 483 647

unsigned long 4 4 0 —>4 294 967 295

long long 8 8 -9 223 372 036 854 775 808 —> 9 223 372 036 854 775 807
unsigned long long 8 8 0—>18446 744 073 709 551 615

float 4 4 3.4 E+/-38 (7 cyfr)

double 8 8 1.7 E+/-308 (15 cyfr)

long double 8 12 1.7 E+/-308 (15/20 cyfr)

string 4 4 tablica (taricuch) znakow (char) [wskaznik !]

Sprawdzanie rozmiarow zmiennych

#include <iostream>
using namespace std;
int main()

{
cout<<"size of bool = "<<sizeof(bool)<<endl;
cout<<"size of char = "<<sizeof(char)<<endl;
cout<<"size of int = "<<sizeof(int)<<endl;
cout<<"size of long = "<<sizeof(long)<<endl;
cout<<"size of long long = "<<sizeof(long long)<<endl;
cout<<"size of float = "<<sizeof(float)<<endl;
cout<<"size of double = "<<sizeof(double)<<endl;
cout<<"size of string = "<<sizeof(string)<<endl;
return 0;

Zmienna globalna zmienna istniejgca przez caty czas zycia programu i

widziana z wielu miejsc w programie. W C++ kazda zmienna globalna jest zmienna
statyczna.

Zmienna lokalna Zmienna zdefiniowana i dostepna wytacznie w okreslonym
bloku programu, tworzona w momencie wejscia do tego bloku oraz usuwana z
pamieci w momencie wyjscia z danego bloku. Tym samym zasieg zmiennej lokalnej
oraz czas jej zycia pokrywajg sie i obejmujg blok, w ktéorym zmienna lokalna jest
zdefiniowana. Zmienna lokalna ma wiec okreslony, ograniczony zakres istnienia i
dostepnosci.

To w jakich blokach programowych mozna tworzy¢ zmienne lokalne definiuje
sktadnia konkretnego jezyka programowania. Typowymi blokami, w ktérych mozna
w roznych jezykach programowania tworzy¢ zmienne lokalne, sg moduty,
podprogramy oraz w pewnych jezykach programowania takze instrukcje blokowe
(lub inne instrukcje strukturalne, np. petla for w jezyku C.

Zmienna lokalna w danym bloku przestania zdefiniowang zmienng globalng lub
zmienng lokalng z bloku nadrzednego o tym samym identyfikatorze. Tym samym
programista nie moze wprost, za pomocg danego identyfikatora, w bloku o
zdefiniowane] zmiennej lokalnej, odwota¢ sie do zmiennej zewnetrznej o tym
samym identyfikatorze co zdefiniowana zmienna lokalna, cho¢ moze to zrobi¢ za
pomocg innych konstrukciji, jezeli sg dostepne w danym jezyku programowania, np.
selekcja, wskaznik, przemianowanie, naktadanie zmiennych lub inne.

WCZYTYWANIE DANYCH

Z KLAWIATURY | WYPISYWANIE ICH NA EKRANIE

int ndiv; // deklaracja zmiennej catkowitej
float x,y,z; // deklaracja zmiennej zmiennoprzecinkowej
string t; // deklaracja zmiennej tekstowej (?)
int main()
{

cout<<"Podaj liczbe : ";

cin>>x;

cout<<"Podana liczba to : "<<x<<endl<<endl;

cout<<"Napisz tekst : ";

cin>>t;

cout<<"Napisales : "<<t<<endl;

return 0;

INSTRUKCJA WARUNKOWA ,,if”

Czyli jak nauczy¢ komputer podejmowania decyzji...

Przyktady:
1. Weryfikacja kodu dostepu (PIN)

2. Logowanie z nazwg uzytkownika i hastem

Typy zmiennych do wykorzystania:

int — liczba catkowita (np. int PIN, pin, Pin;)
string — tekstowa (np. string password="~al2b34c”;)
bool — logiczna, prawda (1) lub fatsz (0) (np. bool c;)

Operatory porownania (wyrazenia boolowskie):

== logiczne porébwnanie (a==b)

< mniejsze niz (a<b)
> wieksze niz (a>b)
<= mniejsze lub rowne (a<=b)
>= wieksze lub rowne (a>=b)

I = nie rowne (a!=b)

Operatory logiczne:
&& - iloczyn logiczny "i"
|| - suma logiczna "lub"

! - zaprzeczenie logiczne (negacja) "nie"

Pytanie:

Jaka zmienna bedzie odpowiednia do przechowywania PIN?

Cwiczenie:
X=3, a=/

Okresl wartos¢ wyrazenia logicznego:
L ((x<=5)||(x>12)]||(a!=7)&&(a>15))

Sktadnia ,,if”

if (a>2) // warunek logiczny 1
{
// instrukcje 1, np.:
cout << "a is greater than 2" << endl;

¥

else if (a<2) // warunek logiczny 2

{
// instrukcje 2, np.:
cout << "a is smaller than 2" << endl;

}
else // pozostate przypadki

{

// instrukcje w pozostatlych przypadkach.

cout << "a is equal 2" << endl;

np.:

Sprawdzanie poprawnosci danych
strumienia wejsciowego

cin.fail () . Sprawdza poprawnosc strumienia wejSciowego, zwraca
’) PRAWDA, jezeli operacja wejscia zakonczyta sie btedem.

cin.clear () 5 Resetuje (czysci) stan btedu.

cin.ignore();

Usuwa (ignoruje) pozostatg zawartoSc strumienia;
Jeden znak lub 1000 znakow do konca linii.

cin.ignore(1000, "\n");

LABORATORIUM

1 (01.10.2025)

2,3 (08.10.2025)

Zadanie 1

(Wczytywanie i wyswietlanie liczb i tekstow, podstawowe dziatania)

Napisz prosty program wczytujgcy liczby (catkowite Iub
rzeczywiste) z Kklawiatury, wykonaj proste obliczenia na
wczytanych danych (np. dodawanie) i wypisz wynik dziatania na
ekranie z odpowiednim opisem (komentarzem). W programie
wykorzystaj deklaracje zmiennych liczbowych i tekstowych.

Sprawdz co sie stanie jezeli zamiast liczby wprowadzisz tekst i
odwrotnie. Przetestuj podstawowe dziatania na liczbach tych
samych typow (int oraz float) oraz na réznych. Sprawdz co sie
stanie przy probie dzielenia przez 0.

Zadanie 2

(Sprawdzanie wieku kandydata na prezydenta)

Napisz program, ktory zapyta uzytkownika o rok urodzenia i na tej
podstawie okresli jego wiek. W zaleznosci od wieku kandydata
program ma sprawdzic¢ czy jest on osoba petnoletnig (18+) i czy moze
kandydowac na stanowisko prezydenta (35+). W zaleznosci od wieku
kandydata program ma wyswietlic odpowiedni komentarz. Mozna
rozbudowac program o inne opcje zwigzane z wiekiem.

Zadanie 3

(Rozwiazywanie rédwnania kwadratowego)

Napisz program do rozwigzywania rownania kwadratowego o postaci:
ax?+bx+c=0, na podstawie wczytywanych parametréw a, b i c.
Zastosuj instrukcje warunkowg ,if” w celu wykonania odpowiednich
obliczen i komentarzy w zaleznosci od wartosci parametru delta. W
razie potrzeby wykorzystaj biblioteke <cmath>.

WYKLAD

2

(15.10.2025)

PETLE

* petla — instrukcja powtarzalna (iteracyjna)
* jteracja — pojedyncze wykonanie petli

* iterator — licznik (przechowuje numer iteracji)

Petle w C++:
e fOr
e while
e do ... while

Petla ”for” (kontrolowana iteratorem)

wartoS¢ poczgtkowa
iteratora | . .
lterator wyrazenie Iog/czng o
(musi byé integer) (petla sie wykona jezeli prawda)
\ / Zmiana iteratora w kazdym kroku

for (int i=1;i<=10;i++)

{
}

cout<<i<k<endl 5 zestaw instrukcji do wykonania

Inkrementacja: i++ tosamoco i=i+1 oraz i+=1
Dekrementacja: i-- tosamoco i=i-1 oraz i-=1

Petle "while”, ”do ... while”
(kontrolowane warunkiem logicznym, nie posiadajg iteratora)

while (lLog. condition)

{

instructions;

Zestaw instrukcji moze sie
nie wykonac ani razu.

do
{

instructions;

} while (log. condition);

Zestaw instrukcji wykona
Sie przynajmniej raz.

W obu przypadkach zestaw wykonywanych instrukcji powinien wptywa¢ na zmiane
warunku logicznego, ktory zakonczy wykonywanie petli. W innym przypadku petle
nie skonczg sie, co moze by¢ pozgdanym efektem (wyjgtkowo).

Zagniezdzanie petli (petla w petli)
Mozna zagniezdzac rozne rodzaje petli wewnatrz innych petili.

Przyktad — podwodjna petla "for":

for (int 1=1;1<=9;1++)
{
for (int j=1;3<=9;)++)
{
cout«::«::i«:i«("—"«::«::j{«::" ";

}
cout<<endl;

Przerywanie dziatania petli

break; //przerwanie wykonywania i=1;
petli, jesli wystagpi w petli while (J<o)
wewnetrznej to tylko ta zostanie L
przerwana while (i1<10)
{
cout<<ll*";
if (i==5)
break;
i++;
)
cout<<endl;
1=0; JH+;

while (1<5)
{
1++;
if (1==3)
continue;
cout<<i;

}

continue; //przerywa wykonywanie
danej iteracji petli, program
przechodzi do kolejnej iteraciji
(tej samej petli)

LICZBY (PSEUDO)LOSOWE

 Kompilator GCC posiada wbudowane funkcje
generujace liczby losowe (np. rand), ale jak one
dziatajg?

* Czas w komputerze (Unix time, POSIX time) -
liczba sekund od 01.01.1970 i caty czas sie zmienia

* Jak zamienic tg liczbe (np. 1 234 567 890) na
,Josowg” liczbe, powiedzmy od 1 do 1007?

» Zastosowac operacje reszty z jej dzielenia przez
100; wynik bedzie od 0 do 99 (np.:1229 % 100 =
29), potem mozna dodac 1.

Obliczanie kolejnych liczb losowych

X, =(s*b)%n - zaczynamy od liczby zaleznej od czasu

X, =(s+x,+b)%n

X, =(s+X,+b)%n .. itak dalej

X. — kolejna liczba (pseudo)losowa

s — Unix time

n — liczba wylosowanych liczb lub zakres (O ... n-1)
b — jakas stata (np. 1)

Funkcje losujace liczby naturalne

#include <cstdlib>

rand()%n; // Lliczba losowa od @ do n-1
rand()%n+1; // Lliczba lLosowa od 1 do n

// przyRladowy zakres od 51 do 75 (25 Liczb):

rand()%25; // Lliczba losowa od 60 do 24
rand()%25+51; // Liczba losowa od 51 do 75

.

lle jest liczb catkowitych od 51 do 75

Randomizacja

#include <ctime>

srand(time(nullptr)); // rozpoczyna randomizacije z
wykorzystaniem czasu komputera, stosujemy raz w
programie, przed pierwszym uzyciem funkcji rand()

RAND MAX // maksymalna liczba losowa

INSTRUKCJA WIELOKROTNEGO
WYBORU ,,switch ... case”

switch (choice) .
{ - Skiadnia
case 1: T
// instrukcije gdy choice==1 I
} zmienna kontrolna:
break; // koniecznie! int
case 2: char
{ (o]
// instrukcije gdy choice==2 ri
}
break; // koniecznie!
case 3:
{

// instrukcje gdy choice==3

break; // koniecznie!
default:

// instrukcje gdy choice jest inne niz wyzej
}
}

Uzyteczne

br'eak; // zatrzymuje petle i przechodzi dalej
EXit(@); // (#include <cstdlib>) konczy program i zwraca ©
system("cls"); //(#include <cstdlib>) czys$ci terminal (Windows)
system("clear‘"); //(#include <unistd.h>) czysci terminal (Linux)

gEtCh(); // (#include <conio.h>) czeka na wcisniecie dowolnego klawisza

Nieskonczone petle
while(true);
for(;;);

Pomiar czasu

#include <ctime>

float sum=0, add=1, elapsed;

clock t start, stop; // zmienne clock t
int iterations=1000*1000*1000;

int main ()

start=clock(); // start pomiaru czasu
for (int i=0;i<iterations;i++)
{
sum+=add;
add/=2.09;
stop=clock(); // stop pomiaru czasu

elapsed=float(stop-start)/CLOCKS PER _SEC;
cout<<"Time measured: "<<elapsed<<endl;
return 0;

LABORATORIUM

4 (15.10.2025)

5,6 (22.10.2025)

Zadanie 4

Stosujgc podane ponizej rozwigzania, napisz program, ktory
bedzie udawat odliczanie do startu rakiety (z dzwiekiem).
Program powinien odlicza¢ od 10 do 1 co 1 sekunde i napisac
"START", gdy licznik dojdzie do O.

#include <windows.h> // windows

#include <unistd.h> // linux

Sleep(1600) // czekaj 1000 ms
Beep(2000,500) // dzwiek (f[Hz], t[ms])
system("cls") // windows

system("clear") // linux

Zadanie 5

Rysunek przedstawia przyrost populacji bakterii w czasie.
Napisz program, ktory bedzie liczyt liczebnos¢ populacji po
uptywie kolejnych godzin az do osiggniecia 1 000 000 000
organizmow. Zastosuj petle "while".

population
population
population
population

Zadanie 6

a) Napisz program, ktory zapyta uzytkownika o liczbe dodatnig.
Jezeli uzytkownik poda liczbe ujemng lub zero, program poprosi
ponownie 0 podanie dodatniej liczby. Program powinien
powtarzaC probe wczytania dodatniej liczby do momentu, gdy
uzytkownik takg liczbe poda Ilub zakonczyC dziatanie po
ustalonej liczbie nieudanych prob. Zastosuj petle ,do...while".

b) Napisz program, ktory zapyta uzytkownika o liczbe
rzeczywistg. Jezeli uzytkownik wprowadzi btedng zmienng do
strumienia wejsciowego to program zapyta ponownie o podanie
liczby rzeczywiste). Program ma dziata¢ w petli az do momentu,
gdy uzytkownik wprowadzi prawidtowg liczbe rzeczywistg lub
zakonczy dziatanie po ustalonej liczbie nieudanych prob.

Zadanie 7

Napisz program, ktory podobnie jak w losowaniu LOTTO
wybierze losowo 6 liczb sposréd 49 i wypisze je na ekranie.
Zastanow sie czy program faktycznie dziata jak losowanie
LOTTO. Jezeli nie to dlaczego? Popraw wowczas program tak,
aby dziatat jak losowanie LOTTO.

Zadanie 8

Napisz program (gre), ktory wylosuje liczbe od 1 do 100 |
poprosi uzytkownika o jej zgadniecie. Po probie odgadniecia
program powinien wyswietlic odpowiedni komentarz, np.:
,Zgadtes”, ,Za duza” lub ,Za mata”. Program powinien pamietac
numer proby | po odgadnieciu wypisaCc go na ekranie wraz ze
stowem ,Zgadtes”. Zastosuj petle ,while” (,do ... while”) oraz
instrukcje warunkowg ,,if".

Zadanie 9

NapisaC program do generowania liczb rzeczywistych z
zakresu, ktory uzytkownik poda z klawiatury. Wykorzystaj
metode generowania liczb catkowitych poznang na zajeciach w
potaczeniu z odpowiednimi operacjami matematycznymi.

Zadanie 10

Napisz program — kalkulator, z wykorzystaniem instrukcji
wielokrotnego wyboru ,switch case”. Program bedzie wyswietlat
menu gtowne 2z dostepnymi operacjami matematycznymi.
Spraw, zeby program dziatat w petli, dopoki uzytkownik nie
wybierze opcji WYJSCIE z menu.

Zadanie 11

Napisz program do obliczania przyblizonej wartosci liczby Pl metodg Monte
Carlo. Algorytm: 1) Wylosuj n wspotrzednych punktéw (par liczb) wewnatrz
kwadratu o boku 2r (r-dowolne) i srodku w poczatku uktadu wspotrzednych.
2) Sprawdz ile z nich (m) miesci sie wewnatrz okregu o promieniu r i srodku
w poczatku uktadu wspotrzednych. 3) Zauwaz, ze stosunek pdl tych figur
powinien byC taki jak stosunek odpowiednich ilosci punktow wewnatrz
kwadratu i okregu i mozna z niego fatwo policzy¢ wartos¢ Pl. Spraw, aby
program dziatat w petli liczgc PI dla liczb n=10, 100, 1000 ..., czyli dla
kolejnych poteg 10. Ustaw liczbe tych petli (poteg) tak, aby czas dziatania
programu nie przekraczat minuty (okoto). Na ekranie wypisuj: nr iteracji,
liczbe wylosowanych punktow n, obliczone PIl, wzgledng réznice miedzy
rzeczywistg liczbg Pl a obliczong, czas trwania iteracii.
OBLICZANIE PI METODA MONTE CARLO

3.6 14.5916 % © sec.
3.24 3.1324 % O sec.
3.2 1.85917 % 0O sec.

10000 3.1336 0.254414 % © sec.
100000 3.1388 0.0888959 % 0.004 sec.
1000000 3.1421 0.0162738 % 0.012 sec.
10000000 3.14148 0.00362481 % 0.173 sec.
100000000 3.14149 0.00312393 % 1.668 sec.
1000000000 3.14152 0.00225118 % 16.81 sec.

1
2
3
4
5
6
7
8
9

WYKLAD

3

(29.10.2025)

TABLICE (MACIERZE)

Tablica — zmienna ztozona reprezentujgca uporzgdkowany
(ponumerowany) zestaw zmiennych jednego typu

nawiasy kwadratowe sg

deklaracja: i nt d a n e [1@] ; zarezerwowane w C++
— v - v 4

wyltgcznie dla tablic

typ danych

P ! ostroznie z

nazwa tablicy rozmiar tablicy,w przypadku tablicy statycznej jej ‘;‘Qj{gﬂ%g:}anrgjem
rozmiar musi by¢ warto$cig statg, znang na etapie
kompilaciji

1 3) 7 11 13 17 19 23

o 1 2 3 4 5 6 7, 8

numeracja: od 0 do rozmiar-1 index

index — unikalny numer miejsca w tablicy (pozycja)

Przykiad uzycia (odwotania do elementu):
cout<<dane[3]; //wypisz element o indeksie 3
cin>>dane[i]; //zapisz do elementu o indeksie 1i

Zmienne typu ,,string” sa tablicami liter: NULL sign

string slowo="computer"”; (koniec
tancucha)

C o m p u t e \O?///

o 1 2 3 4 5 6 7 8

cout<<slowo|[3]; //wypisze litere "p" na ekranie

Wielowymiarowe tablice:
float macierz[5][4]; //macierz 2D
double dane[l0][10][10][10][10]; //macierz 5D

ZAPISYWANIE DO PLIKU TEKSTOWEGO

#include <fstream> // nagtéwek biblioteki do obstugi plikéw

fstream pllkl; // tworzenie obiektu plik1l klasy fstream

// tryb zapisu | dodawanie zawartosci
plikl.open("filename.txt",ios: :out|ios::app);

// otwiera plik w aktualnej lokalizacji, jezeli nie istnieje - bedzie utworzony

plik1l<<x<<" "<cy<<kendl;

// zapisanie zmiennych x i y rozdzielonych 3 spacjami do pliku
(kierowanie strumienia wyjsciowego do obiektu plik1l)

plikl.close();

// zamykanie pliku, wazne, zawsze zamknij plik jezeli zostal otwarty !

OBIEKTOWOSC !!!
open, close, good, eof sg metodami pracujgcymi na obiekcie plik1 klasy fstream

CZYTANIE Z PLIKU TEKSTOWEGO

plikl.open("filename.txt",ios::in); //tryb odczytu

plikl.gOOd(); // (prawda, jezeli otwieranie pliku powiodlo sie,
// fatsz, jesli nie 1lub plik nie istnieje)

plikl.eof(); // prawda, jezeli podczas czytania osiggnieto koniec pliku

plik1>>a; // czytanie jednej zmiennej z pliku, zapisywanie
// jej na zmienng a, (kierowanie strumienia
// wyjsciowego z obiektu plikR1 na zmienng a)

plik1>>a>>b>>c; //czytanie kolejno 3 zmiennych z pliku,
// zapisywanie ich na zmienne a, b, c,
// 1 przejsScie do nastepnej linii

// Powyzszg metode najczesciej stosujemy gdy wczytujemy
// dane uporzadkowane o znanym typie.

plikl.ClOSE(); //pamietaj, zeby zamkngc¢ plik po odczycie

#include <cstdlib>

gEt].lI’IE(pllkl,llnla), //czyta catg linie z plikl (bez wzgledu na
// to co sie w niej znajduje), zapisuje na
// zmienng Llinia typu string i zwraca prawde

atoi(linia . C_S'tl"()); //przeksztatca string na int lub float

atof(linia.c_str());

Metoda c_str() konwertuje cigg znakow zapisany
w zmiennej typu string na cigg ktory moze byc¢
zapisany w tablicy znakow.

ifstream fin("plik.txt");

ofstream fout("plik.txt");

// tylko czytanie z pliku
// tylko pisanie do pliku

fstream file("plik.txt"); // czytanie i/lub pisanie

// uzywajgc fstream nalezy jawnie podac tryb otwarcia, np.:

ios::1n
ios: :out
ios::app

ios::binary

fstream f1("plik.txt",ios::
fstream f2("plik.txt",ios:
fstream f3("plik.txt",ios:

fstream f4("plik.txt",ios:

// czytanie
// pisanie
// dopisywanie

// tryb binarny

in); // tylko czytanie

cout); // tylko pisanie

:in|ios::out);

// czytanie 1 pisanie

cout|ios::app);

// tryb dopisywania

Manipulacja strumieniem wyjsciowym
(formatowanie zapisu)

#include <iomanip>

cout<<setprecision(6); // 6 liczb znaczacych
cout<<fixed<<setprecision(6); // 6 liczb po przecinku
cout.width(10); // szerokosc¢ 10 znakow

cout<<setw(10)<<12.3;

cout<<left<<12.3<<endl; // wyrownanie do lewej
cout<<right<<12.3<<endl; // wyrdwnanie do prawej

cout.unsetf(std::ios base::floatfield); // wytgczenie fixed

Otwieranie pliku o nazwie podanej przez uzytkownika

#include <fstream> // operacje na plikach
#include <string>

string filename;

ifstream file; // plik do odczytu
cout << "Enter the file name: ";

cin >> filename;

file.open(filename); // otwdérz plik

if (!file) {
cout << "Error: could not open file '";

cout << filename << "'" << endl;

return 1; // zakoncz z kodem biedu
}
cout << "File '" << filename << "' opened" << endl;

// czytanie z pliku
file.close();

ZLOZONE TYPY DANYCH

(1) KLASA STRING

Z obiektow klasy string juz korzystamy, sg wygodniejsze niz tancuchy
znakéw (c_str lub char). Po dotgczeniu biblioteki <string> mozna
wykonywac takie opreracje jak: konkatenacja (+), poréownywanie (==,<),
jak rowniez korzystac¢ z metod takich jak:

e size(), length() // zwracajg diugosc¢ tancucha

e empty() // sprawdza czy jest pusty

« append("abc") // dodaje tekst na koncu

e substr(pos,len) // zwraca fragment tancucha

e find("c") // zwraca pierwszg pozycje frazy

« replace(pos,len,str) // zamiana fragmentu %ancucha innym
e erase(pos,len) // usuwa fragment lancucha

e« insert(pos,str) // wstawia tekst w podanym miejscu
e at(i) // zwraca znak na pozycji i

c_str() // zwraca wskaznik do klasycznego c_string -a

i?giggtﬁéz,za); [/ prayiiac obiekt.metoda

#include<string> // C++ (operacje na obiektach klasy string)

#include<string.h> // C (operacje na tablicach char
string napisl; // obiekt napisl klasy string
char napis2[20]; // tablica znakow typu char

napisl="Ala ma kota 1";
strcpy(napis2,”Ala ma kota 27);

cout<<napisl<<endl;
cout<<napis2<<endl;

Przechowywanie w pamieci

Przechowywanie w RAM — tablica znakéw (char):

znak: | A 1 | a m a k o t a \©

index: | o Kl 2 3 4 5 6 7 8 9 1% 11

ASCII: 65 \1\08 97 32 | 109 | 97 32 | 107 | 111 | 116 97 %)

Pierwszy znak ma
zawsze index=0 NULL sign konczy fancuch

cout<<napisl[4]<<endl; Do elementéw, ktére sg znakami

. t char dostajemy si ten
cout<<napis2[4]<<endl; Sg,ﬁgusposéb. Jemy sig w

ASCII table

American Standard Code for Information Interchange

(5 24 1 43 A 72 H 296 ° 1280 x 144 E 168 E 192 L 216 & 248 -
128 25 1 19 1 73 1 927 a 121 y 145 L 169 e 193 L+ 217 1 244 -~
28 26 » 58 2 74 Jd 28 b 122 =z 146 1 178 - 194 218 242
3w 27 « 51 3 75 K 29 ¢ 123 { 147 6 171 =z 195 I 219 i 243 ~
4 + 28 o 52 4 76 L 188 d 124 | 148 ¢ 172 ¢ 196 — 220 g 244 -
5%« 29+ L35 27 M 181 e 125 > 149 L 173 5 197 g 221 g 245 &
6+ 38 i 54 6 BN 182 £ 126 ™ 158 1T 174 « 178 222 246 +
Py 31 F 55 7 72 0 183 g 127 o 151 &8 175 » 199 a 223 = 247 |
8 32 o6 B 88 P 184 h 128 ¢ 152 ¢ 176 & 288 L' 224 6 248 °
70 33 ! 57 2 81 @ 185 i 122 i 153 o 177 & 281 Ii 225 [249
148 34 " 58 = 82 R 186 j 138 e 154 U 178 g 282 = 226 0 258 -
11 & 35 & 57 3 83 58 187 k 131 3 155 T 179 283 T 227 B 2561
12 ¢ 36 % 68 < 84 T 188 1 132 & 156 ¢ 180 284 L 228 n 2652 R
13 37 = 6Bl = 85 U 189 m 133 &4 157 E 181 a4 285 = 229 i 253 #
14 A 38 & 62 > 86 U 118 n 134 ¢ 158 182 & 286 ;1 238 & 254 m
15 #% 39 ¢ 63 7 87 W 111 o 135 ¢ 159 € 183 E 287 = 231 § 255
16 » 48 (¢ 64 B 88 X 112 p 136 I 168 a 184 F 288 4 232 R

17 41 > 65 A 89 ¥ 113 g 137 & 161 i 185 | 289 b 233 0

18 42 = 66 B 98 Z 114 » 138 0 162 6 186 I 218 b 234 ¢

19 ! 43 + 67 C 921 [115 s 132 & 163 a 187 ﬂ 211 E 235 O

281 44 | 68 D 92 % 116 t 148 i 164 4 188 J 212 & 236 ¢

21 5 45 - 67 E 23 1 117 u 141 Z 165 189 £ 213 N 237 ¥

22 - 46 . 78 F 94 ~ 118 v 142 A 166 % 198 = 214 i 238 ¢

23 ¢ 147 - G 95 _ 119 w 143 ¢ 167 2 191 47 215 1 239

duze litery (65-90) + 32 = mate litery (97-122)

cout<<char(4)<<endl; // wypisywanie znakow z tablicy ASCII

Wypiszmy numery elementow, znaki,
numery kodow ASCII

for(int 1=0;i1<=napisl.length () ;1i++)

cout<<i<<"™ "<<napilsl[1]<<" "<<int(napisl|[i])<<endl;
cout<<endl;
for (int 1=0;1<=20;1i++)

cout<<i<<" "<<napils2[1]<<" "<<int (napis2[1i])<<endl;

int l=napisl.length();

// metoda length dziatajgca na obiekt klasy string
(obiektowos¢) zwraca dizugos¢ zmiennej lub numer
ostatniego znaku (null sign)

Wczytywanie tekstu/znaku z klawiatury

d = a \o //cudzysiow gdy tancuch znakow
d

= a //apostrof gdy pojedyncza litera

W strumieniu wejsciowym spacja jest traktowana jako separator !

cin>>napis;
getline(cin,napis);

//uzycie getline zamiast cin pozwala czytac z
klawiatury napisy zawierajgce spacje az do znaku

nastepnej 1linii (enter, 1)

Konkatenacja — tgczenie

string jeden="Ala ma ";
string dwa="kota";
string trzy=jeden+dwa;

Znajdowanie pozycji frazy
string napis="Ala ma kota";
string szuk="ma";
int position=napis.find(szuk);
//jezeli brak to position=-1

napis.erase(3,5);
//usuwa 5 znakdéw zaczynajgc od 3

napis.insert(11, "dostaw");
//wstawia string "dostaw" od pozycji 11

napis.replace(4,2,"zastepstwo");
//zastepuje 2 znaki tekstem "zastepstwo" od pozyciji 4

string nowynapis=napis.substr(4,7);
//wycina nowy tekst z 7 kolejnych znakdéw, ze starego
zaczynajgc od pozyciji 4

Zamiana znakow mate < DUZE
#include<algorithm>

transform(napis.begin(),napis.end(),napis.begin(), : :toupper);

transform(napis.begin(),napis.end(),napis.begin(), ::tolower);

Procedura zmiany zmiennej typu string na
tablice znakow typu char

#include<cstring>

string napis="Ala ma kota";

int n=napis.length(); // zwraca diugos¢ tancucha
char tab_char[n]; // tworzy tablice znakdw
strcpy(tab_char,napis.c_str()); // przepisanie

//funkcja strcpy konwertuje cigg znakdw zapisany w obiekcie
klasy string (metoda c_str() zwraca wskaznik do tablicy
znakoéw zakonczonej znakiem NULL) na cigg ktory moze byc
zapisany w tablicy znakéw (tab _char), moze byc¢ potrzebne gdy
chcemy korzystac¢ z funkcji jezyka C jub jego starszych
procedur i funkciji

LABORATORIUM

7 (29.10.2025)

8,9 (05.11.2025)

Zadanie 12 (Prosta analiza danych)

Napisz program, ktory wczyta 2z klawiatury serie liczb
rzeczywistych. Przechowa) wczytane dane w tablicy. Wypisz
wczytane liczby na ekranie w uporzgdkowany, czytelny sposaob.
Nastepnie program wyznaczy / znajdzie / obliczy i wyswietli na
ekranie nastepujgce parametry: wartoS¢C najmniejszg, wartosc
najwiekszg, sume liczb, srednig i odchylenie standardowe.

Zadanie 13 (Sortowanie liczb)

Napisz program, ktory sortuje duzg tablice liczb w porzgdku rosngcym
lub malejgcym, wykorzystujgc dwie proponowane metody (algorytmy):
sortowanie bgbelkowe (bubble sort) i sortowanie szybkie (quick sort).

Program powinien: (1) Poprosi¢ uzytkownika o podanie rozmiaru
tablicy. (2) Wylosowac tablice liczb rzeczywistych (lub catkowitych) o
podanym rozmiarze. (3) Znalez¢ i wyswietlic najwiekszy oraz
najmniejszy element tablicy. (4) Posortowac tablice dwoma metodami
(bgbelkowg i szybka), mierzgc czas wykonania kazdej z nich. Po
zakonczeniu sortowania wypisaC na ekranie: czas sortowania dla
kazde] metody, pieC pierwszych oraz pieC ostatnich elementow:
tablicy wylosowanej, tablicy posortowanej metodg bgbelkows, tablicy
posortowanej metodg szybkg. Wyniki nalezy przedstawi¢ np. w formie
tabeli z trzema kolumnami:

Wylosowane Bubble sort Quick sort

Zadanie 14 (Prosta baza danych)

Napisz program, ktory obstuguje prostg baze danych wczytywang z pliku
tekstowego. Plik ma strukture powtarzajgcych sie trojek linii: 1. numer
rekordu (liczba catkowita), 2. nazwa (np. imie lub imie i nazwisko), 3. jakas
liczba (np. rok urodzenia).
Program powinien wczyta¢ wszystkie rekordy do tablic (np. trzy rownolegte
tablice: id[], namel[], vyear[]), a nastepnie umozliwi¢ uzytkownikowi
wykonywanie operacji z menu opartego na instrukcji switch-case. Menu
programu ma zawierac nastepujgce opcje:
0. Wyjdz z programu — zakoncz dziatanie.
1. Wyswietl wszystkie rekordy — wypisz dane w czytelnym,
uporzgdkowanym formacie.
2. Dodaj nowy rekord — dopisz rekord na koniec tablic oraz do pliku.
3. Usun rekord (dla chetnych) — usun rekord o podanym numerze |
zaktualizuj plik.
Program powinien dziata¢c w petli, az uzytkownik wybierze opcje
zakonczenia. Wczytywanie i zapisywanie danych nalezy zrealizowac z
uzyciem bibliotek <fstream> oraz tablic do przechowywania rekordow.

LABORATORIUM

10 (12.11.2025)

11, 12 (19.11.2025)

Zadanie 15 (Czytanie i wyswietlanie danych)

Struktura pliku tekstowego z danymi jest nastepujgca: pierwsze trzy
linie to komentarze — dwie zawierajg informacje tekstowe o danych, a
trzecia okresla liczbe rekordow.

W kolejnych liniach znajdujg sie dane liczbowe (rzeczywiste) utozone
w czterech kolumnach: wielkos¢ fizyczna X, jej niepewnos¢ dX,
wielkos¢ fizyczna Y, jej niepewnosC dY (oddzielone spacjami lub
tabulatorami).

Przygotuj taki plik samodzielnie, korzystajgc z Notatnika lub arkusza
kalkulacyjnego. Pamietaj, aby liczby zmiennoprzecinkowe zapisywac
z kropka, zgodnie z notacjg angielska.

Napisz program, ktory: zapyta uzytkownika o nazwe pliku z danymi,
wczyta caty plik (dane liczbowe do jednej tablicy), wypisze na ekran
pierwsze trzy linie komentarza, po czym zapyta uzytkownika, czy
chce wyswietliC wszystkie dane. Jesli uzytkownik potwierdzi —
program wypisze petng zawartosC tablicy danych, jezeli nie —
zakonczy dziatanie.

Zadanie 16 (Prosta analiza tekstu)

Napisz program, ktory poprosi uzytkownika o podanie sentencji
(tekstu) do analizy. Program policzy z ilu znakow (tgcznie ze znakami
niedrukowalnymi) i wyrazow sktada sie tekst. Nastepnie program
poprosi uzytkownika o podanie litery do wyszukania w ww sentencji.
Program policzy ile okreslonych w zapytaniu liter (np. 'a' lub ‘A’) jest w
podanym z klawiatury tekscie.

Wielkosc¢ liter nie ma znaczenia, zliczamy zarowno duze jak | mate
litery. Wynik wypisujemy na ekranie. Prosze zwrociC uwage na
mozliwosC podania duzej lub matej litery, podczas gdy program ma
znalezc ich liczbe niezaleznie od tego, czy w zdaniu wystepuje litera
mata czy duza.

Zadanie 17 (Szyfr Cezara)

Opracuj prosty schemat szyfrowania oparty na numerach znakéw z
tablicy ASCII, np. przesuniecie numeru znaku o jeden lub wiecej
("szyfr Cezara"). Osoba szyfrujgca®™ tworzy plik sentence.txt
zawierajgcy zdanie do zaszyfrowania oraz pisze program, ktory
odczyta to zdanie, zaszyfruje za pomocg klucza (iczba przesuniecia)
a nastepnie zapisze zaszyfrowane zdanie do pliku encrypted.txt.
Osoba odszyfrowujgca® znajgc klucz szyfru pisze program, ktory
odczyta zaszyfrowane zdanie, odszyfruje a odszyfrowane zdanie
zapisze do pliku decrypted.txt. Sukcesem jest identyczna zawartos¢
(co do tresci) plikdw sentence.txt i decrypted.ixt.

* Osoba szyfrujgca i odszyfrowujgca moze byc¢ jedng i tg samg osobg w celu wykonania zadania.

WYKLAD

4

(26.11.2025)

FUNKCJE

Funkcja - podprogram, wydzielony fragment kodu, wykonujacy
okreslone zadanie, ktéry moze byc¢ wielokrotnie wywotywany. Zwykle
przyjmuje argumenty (ale nie musi), wykonuje operacje i moze zwracac
wartosc¢ (ale nie musi). Dzieki funkcjom program staje sie czytelniejszy,
uporzgdkowany i fatwiejszy w utrzymaniu. Jest podstawowym
elementem paradygmatu programowania proceduralnego

Programowanie proceduralne — paradygmat programowania
polegajgcy na podziale kodu na fragmenty (procedury, funkcje)
wykonujgce okreslone zadania. Jest rozszerzeniem paradygmatu
programowania strukturalnego kfadgcym dodatkowy nacisk na
modularnosc¢ i wielokrotne uzycie kodu poprzez zastosowanie funkc;ji.

Programowanie strukturalne - paradygmat programowania polegajgcy
na pisaniu programow w sposob uporzgdkowany, z wykorzystaniem
trzech podstawowych struktur: sekwencji (kolejno), warunkéw
(logicznych) i petli. Program dzieli sie na mniejsze, czytelne fragmenty
(np. funkcje) a przeptyw sterowania odbywa sie w sposob przewidywalny
— bez skokow typu goto. Dzieki temu kod jest prostszy, bardziej czytelny
| tatwiejszy do utrzymania.

Funkcja gtowna w C++ (int main()) — zarzgdza pozostatymi
funkcjami (jezeli istniejg)

Deklaracja funkcji moze, ale nie musi zawieraC nazw argumentow
formalnych, moze by¢ po prosu kopig definicji (nagtowka).

Do funkcji wysylane sg kopie wartosci argumentow poprzez
argumenty formalne, funkcja nie ma dostepu do oryginalnych
zmiennych (aktualnych argumentow), tylko do ich wartosci.
Wszelkie operacje sg wykonywane na kopii i nie sg widoczne
poza blokiem funkcii.

Instrukcja return oznacza powrdt z funkcji do miejsca jej
wywotania. Wykonanie instrukcji return powoduje zakonczenie
wykonywania funkcji (rowniez main()). Jesli funkcja powinna cos
zwrocic to zwracana rzecz (wartos¢ lub zmienna) pojawia sie po
stowie return. W obrebie jednej funkcji moze pojawi¢ sie wiecej
niz jedna taka instrukcja. Jezeli funkcja nic nie zwraca to po
return; jest srednik lub pomijamy return.

Przykiad 1

(Funkcja do obliczania potegi)

##tinclude <iostream>

using namespace std;

float num=2.3; //zmienne globalne (kazda funkcja ma dostep)
int pow=4;

float power(float,int); //deklaracja funkcji; typ wyniku, nazwa,
typy parametrow wejsciowych, nawiasy okragite

int main() //funkcja sterujaca (gidwna)
{ //argumenty aktualne
cout<<power (num,pow)<<endl; //wywotanie funkcji
return 0;
}
//argumenty formalne (moze byc bez)
float power(float a,int n) //definicja funkcji (nagiowek)
float b=a; //ciato funkcji; zmienne lokalne, operacje
for(int i=2;i<=n;i++)
b*=a;
return b; //zZwracana wartosc

Przykiad 2

(Funkcja do wyswietlania menu)

// umieszczenie definicji funkcji i jej ciata przed main() - nie trzeba
// wczesniej deklarowacé, ale jak jest wiecej takich funkcji to robi sie
// niepraktyczne (kwestia subiektywna)

void main_menu() //void - nie zwraca nic (kiedys procedura)
{

cout<<™ TYTUL PROGRAMU "<<endl;

COUt((=== ==" <<end1;

cout<<" Wybierz opcje:"<<endl;

cout<<” 1. Zrob to"<<endl;

cout<<"” 2. Zrob tamto"<<endl;

cout<<"™ 3. Wyjscie"<<endl;

// nie ma return, moze byé, ale bez wartosci zwracanej

}

int main()

{
main_menu(); // wywolanie funkcji
// reszta programu
return 9;

{

// Mozna sie zastanowic, czy warto, zeby funkcja menu() zwracata
// cos, np. liczbe odpowiadajgcg wybranej opcji.

Przykladowe deklaracje

double funl(double);
//zwraca liczbe double, przyjmuje liczbe double

float fun2(float x,float y);
//zwraca liczbe float, przyjmuje dwie liczby float

void fun3(float x,int y);
//niczego nie zwraca, przyjmuje liczbe float oraz int

void fun4d();
//niczego nie zwraca, niczego nie przyjmuje

Przekazywanie tablic do funkcji

Tablice sg przekazywane do funkcji inaczej niz standardowe
zmienne. W przypadku tablic do funkcji zawsze trafia oryginalna
zawartosc tablicy, co oznacza, ze jesli funkcja zmieni cos w tablicy, to
po zakonczeniu jej wykonywania ta zmiana bedzie zmiang trwata.

Szczegotowo mechanizm przekazywania tablic do funkcji zostanie
przedstawiony podczas omawiania wskaznikow. Teraz musi
wystarczy¢ nam wiedza o tym jak stworzy¢ funkcje przyjmujaca jako
parametr tablice i jak takg funkcje wywoftac.

Przekazujgc tablice do funkcji nie podajemy jej rozmiaru, ale
mozemy np:

void WypiszTab(int tab[5],int rozmiar)

Kompilator nie bierze pod uwage liczby ktora pojawia sie w
nawiasach kwadratowych przy nazwie tablicy.

Przeanalizuj ponizsze przyktady:

void WypiszTab(int tab[],int rozmiar)
for(int 1=0@;i<rozmiar;i++)

cout<<tab[i]<<" ";
cout<<endl;

¥

void PowiekszTab(int tab[],int rozmiar)

for(int i=0;i<rozmiar;i++)

tab[i]++; //zwiekszamy elementy tablicy o 1
}
int main()
{

const int r=7;

int t[r]={1,2,3,4}; //reszta zostanie wypeiniona zerami
WypiszTab(t,r);

PowiekszTab(t,r);

WypiszTab(t,r);

return 0;

Wartosci domysine parametrow funkcji

Parametrom funkcji mozna przypisa¢ wartosci domysine. Jesli
parametr ma przypisang wartos¢ domysing, to podczas wywotywania
tej funkcji nie musimy podawac jego wartosci, w takiej sytuacji bedzie
on miat przypisang wartos¢ domysing. Jesli jednak podamy wartosc¢
dla danego parametru, to przyjmie on takg wartos¢ jak zostata
podana podczas wywotania funkcji. Przykfad:

void NapiszTekst(string napis,int ile=5)
{
for(int i=0;i<ile;i++)
cout<<napis<<endl;

¥

int main()

NapiszTekst("Witaj",2);
NapiszTekst("Hello");
NapiszTekst("Czesc",1);
return 0;

Przecigzanie funkciji

W jezyku C++ mozemy tworzy¢ funkcje o takich samych nazwach, ale
muszg sie one w takim przypadku rozni¢ typem parametrow lub ich liczba.
Dopuszczalna jest sytuacja, w ktorej funkcje majg taki sam typ parametréw
ale w innej kolejnosci. Przyktady:

float dodaj()

float dodaj(int i)

float dodaj(float a, double b)
float dodaj(double a, float b)

Podczas wywotania funkcji kompilator wybierze jedng z nich na
podstawie liczby i typu argumentu(ow).

W przypadku przecigzania nazw funkcji kompilator nie bierze pod uwage
zwracanego typu. Ponizsze dwie funkcje sg nieprawidtowe, poniewaz majg
taki sam typ parametru:

int dodaj(float 1)
float dodaj(float i)

Sufiksy danych

Sufiksy danych to dodatkowe litery dopisane na koncu literatow
liczbowych, ktore okreslajg typ danych, jaki ma mie¢ wartos¢ zapisana w
kodzie. Dzieki nim mozesz jednoznacznie wskazac, czy liczba ma bycC typu
int, long, float, double itd. Jesli chcemy poinformowa¢ kompilator, ze dana
liczba jest typu float to mozemy dodac po liczbie sufix "' np.:

dodaj(2.4,3f) lubdodaj(2.4f,3.0)
Domyslinie liczba z kropka jest typu double, bez kropki — int.

Przyktadowe sufiksy dla liczb catkowitych:

U,u - unsigned int np. 10u
L,1 - long int np. 201
LL,11 - 1long long int np. 2311
ul - unsigned long int np. 51ul
ull - unsigned long long int np. 47ull

Przyktadowe sufiksy dla liczb zmienoprzecinkowych:

f - float np. 3.14f
L,1 - long double np. 2.71L

Przypomnienie

(Zmienne lokalne i globalne)

W funkcjach mozemy zadeklarowa¢ nowe zmienne, bedg one zmiennymi
lokalnymi. Oznacza to, ze bedg dostepne tylko w tej funkcji, w ktérej zostaty
zadeklarowane. Inne funkcje nie majg do nich dostepu. W réznych funkcjach mozemy
deklarowa¢ zmienne o takich samych nazwach. Zmienna lokalna nie ma przypisanej
zadnej konkretnej wartosci poczatkowej. Zmienne tworzone w obrebie danego bloku (np.
funkcji) sg przechowywane w pamieci tylko w momencie wykonywania tego bloku. Po
jego zakonczeniu, wszystkie zmienne w nim utworzone zostajg z pamieci usuniete.

Zmienne globalne to zmienne zadeklarowane poza jakgkolwiek funkcjg, réwniez
poza funkcjg main(). Sg dostepne dla wszystkich funkcji. Jesli jakas funkcja zmieni
wartos¢ zmiennej globalnej, to w innej funkcji taka zmiana jest widoczna. Wynika to z
tego, ze zmienne globalne sg przechowywane w pamieci juz po uruchomieniu programu i
caly czas znajdujg sie w tym samym miejscu w pamieci (sg przechowywane pod tym
samym adresem). Wartos¢ domysina zmiennej globalnej to zero.

Przestanianie zmiennych

Zmienne globalne moga byC¢ przestoniete, jesli wewnagtrz funkcji (lub bloku)
zadeklarujemy inng zmienng o tej samej nazwie (choC niekoniecznie tym samym typie).
Wowczas nazwa tej zmiennej w ciele funkcji odnosi sie do zmiennej lokalnej. Zmienna
globalna istnieje, ale jest w zakresie funkcji (bloku) niewidoczna.

Rekurencja (rekursja)

Rekurencja to technika programowania, w ktorej funkcja wywotuje sama
siebie, rozwigzujgc problem przez podzielenie go na mniejsze, podobne
podproblemy. Kazde wywofanie dziata niezaleznie i czeka na wynik
kolejnego. Rekurencja zawsze musi mie¢ warunek brzegowy, Kktory
zatrzymuje dalsze wywotania, aby unikngC nieskonczonej petii.

Przyktadem algorytmu, w ktorym mozemy zastosowacC rekurencje jest
obliczanie silni. Po podaniu przez uzytkownika liczby catkowitej wywotywana
jest funkcja obliczajgca silnie i wypisywany jest wynik, ktory ta funkcja
Zwrocita.

Innym przyktadem algorytmu rekurencyjnego jest algorytm sorotwania
szybkiego (quicksort). Dzieli on tablice na dwie mniejsze czesci wzgledem
elementu pivot (element osiowy, podziatu), a nastepnie rekurencyjnie
wywotuje samego siebie do posortowania kazdej z tych czesci, az do
osiggniecia warunku brzegowego, kiedy podtablica ma 0 lub 1 element.

Przyktad 3

(Rekurencyjne obliczanie silni)

int silnia(int n)

if(n<=1)
return 1;
return n*silnia(n-1);

¥

int main()

L,
int a;
cout<<"Podaj liczbe:"<<endl;
cin>>a;
cout<<a<<"l="<<silnia(a)<<endl;
return 9;

Przykiad 4

(Funkcja do sortowania szybkiego)

void quicksort(int tab[], int lewy, int prawy) {
int 1 = lewy;
int j = prawy;
int pivot = tab[(lewy + prawy) / 2]; // element osiowy (wartosc)

while (i <= j) {

while (tab[i] < pivot) i++; // szukaj elementu wiekszego
while (tab[j] > pivot) j--; // szukaj elementu mniejszego
if (i <= J) A
swap(tab[i], tab[j]); // zamiana
i++;
J--5
}
}
if (lewy<j) quicksort(tab,lewy,j); // rekurencja dla L. czesci

if (i<prawy) quicksort(tab,i,prawy); // rekurencja dla P. czesci

LABORATORIUM

13 (26.11.2025)

14, 15 (03.12.2025)

Zadanie 18 (Obliczanie potegi)

Rozbuduj funkcje przedstawiong jako przyktad do obliczania potegi w
taki sposob, zeby pozwalata na obliczenie rowniez ujemnej poteqgi
danej liczby. Zadbaj o to, zeby program liczyt tylko catkowite poteqi,
nawet przy przypadkowym podaniu potegi jako liczby
zmiennoprzecinkowej. Niech program napisze jakie dziatanie wykonat
| jaki jest jego wynik, np.: (-2.1)"3 = -9.261.

Zadanie 19 (Kalkulator z funkcjami)

Przeksztat¢ program KALKULATOR (Zadanie 10) tak, aby uzywat
funkcji do wykonywania dziatan matematycznych i wyswietlania menu
gtownego. Dodaj dziatanie potegowania i obliczania silni. Program
powinien dziataC w petli az do wyboru opcji wyjscia.

Zadanie 20 (Sortowanie z funkcjami)
Zmodyfikuj program z Zadania 13 tak, aby uzywat funkcji.

Zadanie 21 (Analiza danych z histogramem)

a) Napisz program, ktory wylosuje tablice n (docelowo duze) liczb
rzeczywistych z podanego zakresu i zapisze je w pliku tekstowym
dane.txt w uporzadkowany sposob — jedna po drugiej z
odstepami (np. spacje) lub jedna pod druga.

b) Napisz program, ktory odczyta dane liczbowe z pliku dane.txt a
nastepnie wyznaczy / znajdzie / obliczy i wypisze na ekranie:
liczbe danych zawartych w pliku, najmniejszg i najwiekszg liczbe,
srednig, odchylenie standardowe, mediang, dominante
(koniecznie uzywaj funkciji).

c) Do programu analizujgcego dane dopisz funkcje, ktora wyznaczy
histogram dla danych. Parametrami wejsciowymi funkcji beda
tablica danych, jej rozmiar oraz iloSC przedziatow histogramu.
Funkcja policzy i wypisze na ekranie granice przedziatow oraz ile
liczb znajduje sie w kazdym z przedziatow (liczebnosc¢). Dane te
zapisze rownolegle do pliku tekstowego dane hist.txt w trzech
kolumnach: lewa granica, prawa granica, liczebnosc¢ (przedziatu).

WYKLAD

5

(10.12.2025)

WSKAZNIKI. DYNAMICZNA

ALOKACJA PAMIECI

Kazda komorka (1 Bajt) w pamieci RAM posiada
swoj witasny numer (adres) zachowany w formacie
heksadecymalnym (HEX, szesnastkowym) Taki
format zapisu jest krotszy niz binarny i dziesietny.

Wskaznik (ang. pointer) — zmienna, ktora
przechowuje adres w pamieci RAM innej zmiennegj
(jej pierwszego Bajta).

Dynamiczna alokacja pamieci (na stercie, ang.
heap) — w kazdym momencie, na zgdanie, nie tylko
przy uruchomieniu | zakonczeniu programu
(statyczna alokacja pamieci, na stosie, ang. stack).

numer
144

adres: 3F7A (16250)

(16250 — 16253) I
p

16250
adres: AF18 (44824)

Sterta i stos (ang. heap & stack)

Stos (stack)
* Pamiec¢ dla zmiennych lokalnych i wywotan funkcii.
* Maty, typowo 1-8 MB (w zaleznosci od systemu)
* Bardzo szybki dostep (LIFO: Last In, First Out), ale ograniczona
wielkos¢ — ryzyko stack overflow !
e Przyktad: int a[1000];

Sterta (heap)
« Pamiec¢ dla obiektow dynamicznych (new, std: :vector).
* Duza — ograniczona gtownie RAM + swap (Linux) lub
pagefile.sys (Windows).
* Wolniejsza alokacja, wymaga zarzgdzania pamiecia.
* Przyktad: auto a = new int[1000000];

Podsumowanie:
» Stos = maty i szybki, automatyczny.
» Sterta = duza i elastyczna, ale wolniejsza.

Format heksadecymalny zapisu liczb

15

3A5F

Ox3A5F — z przedrostkiem Ox (dlaczego?)

3A5Fh — w asemblerze
3=3

A=10

5=5

F=15

3-16°+10-16°+5-16'+15-16°=14943

w binarnym:
11101001111111

Uzycie wskaznika pojedynczej zmiennej

int main()

{ |
int numer = 144; = // zmienna int (4 bajty w RAM)
int *W; // typ zmiennej, *, nazwa wskaznika w kodzie
W = &numer‘; // adres zmiennej numer przypisujemy na wskaznik
cout << w << endl; // wypisz wskaznik (hex)
cout << *w <<endl; // wypisz zawartos¢ komoérki pamieci
*W = 20; // przejdz pod adres zapisany w ,w” i zapisz tam 20
return 9;

}

& (ampersand) - operator adresu, umozliwia uzyskanie adresu w pamieci
obiektu stojgcego po jego prawej stronie

* - operator dereferencji, umozliwia dostep do wartosci, ktéra znajduje sie
pod adresem wskazywanym przez wskaznik po jego prawej stronie

Zalety stosowania wskaznikow

1) Bezposredni dostep do pamieci (adresdéw) co daje duzg kontrole
nad dziataniem programu.

2) Dynamiczne zarzgdzanie pamiecig RAM, mozliwosc¢ tworzenia i
usuwania obiektow (duzych) za pomocg operatorow new i delete.

3) Przekazywania duzych struktur do funkc;ji (tablic) bez koniecznosci
ich kopiowania.

4) Zwiekszenie szybkosci zapisu/odczytu komorek w tablicy (kiedys,
wspotczesnie juz nie).

5) Mozliwos¢ wspotpracy z urzgdzeniami zewnetrznymi poprzez

dostep do odpowiednich adresow komorek pamieci.

Wady: Dos$¢ nieintuicyjny sposob alokacji tablic wielowymiarowych.

Przekazywanie funkcjom oryginalnych
zmiennych (przez referencje)

float srednia(float &x, float &y, float &z)
//float srednia(float x, float y, float z)

float s = (x +y + z) / 3;
X += 1000; y += 1000; z += 1000;
return s;

¥

int main()

float a = 1.2, b=2.3, c = 3.1;
cout<<”przed funkcja: ”<<a<<”; <<b<<”; 7<<c<<kendl;
cout<<”funkcja: ”<<srednia(a,b,c)<<endl;

cout<<”po funkcji: 7<<a<<”; Y<<b<<”; ’<<c<<endl;
return 0;

Dynamiczna alokacja tablic i wskazniki

int size=10; // rozmiar tablicy
double stab[size]; // alokacja statyczna
double *dtab; // deklaracja wskaznika o nazwie dtab

dtab = new double[size]; // dynamiczna alokacja tablicy
// 1lub:
double *dtab = new double[size];

delete [] dtab; // zwolnienie pamieci (zawsze)
0 1 2 3 4 5
14.1 24.5 1.2 36.01 4.51 11.1

16250 16258 16266 16274 16282 16290

Petla po wskazniku

int size = 10; // rozmiar tablicy
// deklaracja wskaznika i dynamiczna alokacja tablicy:
int *tab = new int[size];
for(int i=0; i<size; i++)
{
// wypisz adres komorki i jej zawartosSc:
cout << tab << ” »” << *tab << endl;

Znajdz biad

tab++; // inkrementacja wskaznika
}
delete [] tab; // zwolnienie pamieci
0 1 2 3 4 3
14 24 13 36 45 11

16250 16254 16258 16262 16266 16270

Petla po wskazniku

int size=10;
int *tab = new int[size];
int *p = tab; // pomocniczy wskaznik do iteracji
for(int i=0; i<size; i++)
{
cout << p << ”? k< *p << endl;

p++; // inkrementacja wskaznika pomocniczego (4 int, 8 double)

}

p = tab; // jezeli konieczne ustawiamy z powrotem na poczagtek

delete [] tab; // zwalniamy pamiec

Funkcje pracuja na oryginalnych tablicach

int *p;
p = &tab[0@] ¢« p = tab

// nazwa tablicy alokowanej statycznie jest adresem jej zerowego elementu
// adresem statym, nie mozna zrobié tab++

Ktory nagtowek jest poprawny w kontekscie przekazania
tablicy do funkcji liczacej srednig?

float srednia(float tab[5])

float srednia(float tab[], int n)
float srednia(float tab, int n)
float srednia(float *tab, int n)

Alokacja tablic wielowymiarowych (N)
1) Dynamiczna tablica ND jako N-krotny wskaznik (new w N petlach)
— skomplikowane zarzgdzanie i brak ciggtosci pamieci

2) Tablica dynamiczna jako wskaznik do tablicy (N-1)D wskaznikow
— intuicyjne w trybie auto, ale wolne, brak ciggtosci pamieci

3) Tablica ND jako jednowymiarowy blok pamieci — dosc¢ proste,
szybkie, zachowana ciggtos¢ pamieci, najlepsze pod cache CPU

row,col,depth

012 | 022
011 | 0,21
010 | 020 112 | 122
H 111 | 1,21
|:> m 110 | 120 212 | 222
214 | 224
210 | 220

kil 0.1 020 | 021 02z [100 | 1.01 1 110 [114 112
C 120 | 1.21 | 122 -2.1.0 211 [212 | 220 | 221 | 222

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays/

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays/

Dynamiczna alokacja tablicy 3D

(jako jednowymiarowy blok pamieci)

int X =4, Y =05, Z = 6; // deklaracija
int *tab = new int[X * Y * Z];

int index = 1i*(Y*Z) + j*Z + k; // indeksowanie
tab[index] = 123;

delete[] tab; // zwolnienie pamieci

LABORATORIUM

16 (10.12.2025)

17, 18 (17.12.2025)

Zadanie 22

a) Napisz program, w ktorym sprawdzisz w praktyce jakich
rozmiarow tablice (w megabajtach) jestes w stanie
zadeklarowacC statycznie. Chodzi o oszacowanie wielkosSci
stosu, a nie precyzyjne okreslenie rozmiaru tablicy z
doktadnoscig do Bajta.

b) Napisz prosty program demonstrujgcy, ze funkcje zawsze
pracujg na oryginalnych tablicach zaréwno w przypadku
alokacji statycznej jak i dynamicznej.

Zadanie 23 (szybkosé zapisu / odczytu)

Znajgc rozmiar dostepnej pamieci RAM zaalokuj dynamicznie
3 duze tablice liczb typu double.

1) Zmierz | porownaj czas zerowania tablicy (wypetnianie
zerami) z zastosowaniem wskaznika oraz indeksow.

2) Napisz funkcje losujgcg liczbe rzeczywistg (z dowolnego
zakresu). Zmierz i porownaj czas wypetniania tablicy liczbami
losowymi z zastosowaniem wskaznika oraz indeksow.

3) Wykonaj jakies dziatanie na odpowiednich elementach
dwoch tablic, wynik zapisz w odpowiednim miejscu tablicy
trzeciej. Ponownie zmierz 1 porownaj czas te] operacji
wykorzystujac indeksy i wskazniki.

4) Sprawdz dziatanie programu i czasy operacji stosujgc
standardowe poziomy optymalizacji (-00, -01, -02, -03, -Os,
-Ofast).

LABORATORIUM

19, 20 (14.01.2026)

WYKLAD

6

(21.01.2026)

ZLOZONE TYPY DANYCH
(2) STRUKTURA

Struktura to ztozony typ danych grupujgcy logicznie powigzane ze sobg dane
roznego typu w jednym obszarze pamieci. Sktadowe struktury — pola majg swoje
unikatowe nazwy. Struktury pozwalajg w przejrzysty sposob opisywacC ztozone
obiekty. Przyktadem struktury moze bycC informacja o ksigzce, ktérej pola bedag
zawieraty: imie i nazwisko autora (tancuchy tekstowe), tytut (tancuch tekstowy), rok
wydania (liczba catkowita), nazwa wydawnictwa (tancuch tekstowy), numer ISBN
(liczba catkowita lub tarncuch tekstowy) itp.

Budowa struktury:
struct nazwa typu strukturalnego |

typl nazwa sktadowejl;
typ2 nazwa skladowej2;
typ3 nazwa skladowej3;

struct Book {
string title;
) string aut name;
b string aut surname;
Definicja struktury musi kohczy¢ sie srednikiem. int year;
int 1isbn;
Przyktadowa struktura moze wyglgdac nastepujgco: 1

Tworzenie obiektu struktury

struct Osoba
string imie;

§tring nazwisko; lub Osoba Kowalski, Nowak:
int r ur; o o _
} Kowalski, Nowak; (podobnie jak definicja zmiennych)

Dostep do sktadowych struktury
nazwa_typu_strukturalnego.nazwa_ sktadowej

Nowak.imie="Adam";

Nowak.nazwisko="Nowak":

Nowak.r ur=1985;

cout<<Nowak.imie<<" "<<Nowak.nazwisko<<" "<<Nowak.r ur<<endl;

Inicjowanie obiektow

struct Osoba { (kolejnosé, przecinki, znak =)
string 1mie;
string nazwisko; w trakcie definicji struktury

int r ur;
} Kowalski {"Jan","Kowalski"™, 1964}, Nowak={"Adam", "Nowak",1935};

lub po jej zdefiniowaniu:

Osoba Nowak={"ﬂdam","nggh",;BEE}JKowalski {"Jan", "Kowalski", 1964} ;

Tablica struktur
Tablica struktur umozliwia przechowywanie wiekszej liczby obiektow danej
struktury. Tablice tworzymy podajgc jako jej typ nazwe struktury np.:

Osoba tab[10];

Powyzsza tablica bedzie przechowywata dane 10 osob. Mozemy rowniez utworzyc
tablice w sposdb dynamiczny:

Osoba *tab2=new Osoba[10];

Korzystanie z takiej tablicy polega na podaniu jej nazwy, indeksu elementu w
nawiasie kwadratowym, kropki i nazwy sktadowej:

tab[0].imie="Adam”;

Przyktad pokazujacy jak wypetni¢c danymi catg tablice:

for (int i=0;i<10;i++) for (int i=0;i<10;i++)
tab[i] .1mie="Jan"; tabZ2[i].imie="Adam";
tab[i] .nazwisko="Kowalski"; tab2[i].nazwisko="Nowak":

tab[i].r ur=1980; tab2[i].r ur=1965;

Struktury — operator przypisania

Przypisanie struktur realizujemy za pomocg operatora przypisania:

Osoba Kowalskil {"Jan","Kowalski",19},Kowalski2;

Kowalski2=Kowalskil;

W sytuacji, gdy wewnatrz struktury znajdujg sie wskazniki, taka operacja
przypisania jest dosSC niebezpieczna. Kompilator operacje przypisania wykonuje
przypisujgc wartosci poszczegolnych sktadowych jednej struktury do drugiej. Jesli
w strukturze wystepuje wskaznik, to po takiej operacji wskazniki w obu obiektach
bedg przechowywaty takie same adresy. Tym samym po takiej operacji nie

bedziemy mieli dwdch w petni niezaleznych obiektow.

Obiekty w strukturze

Tworzgc strukture, jej sktadowe mogg byc¢
obiektami innych struktur. Liczba takich
zagniezdzen nie jest w zaden sposob
ograniczona. Taka sytuacja wystepuje w
przyktadzie obok —

Po utworzeniu obiektu chcgc dostac sie do
sktadowych struktury wewnetrznej musimy dwa
razy skorzystac z operatora kropki —

struct DataUrodzenia |
int r;
int m:
int d:

struct Student |
string nazwisko;
DataUrodzenia datalUr;

Student Jobs:
Jobs.dataUr.r=1955;
Jobs.nazwisko="Jobs";

W sytuacji gdy obiekt struktury jest sktadowg innej struktury inicjowanie takiego
obiektu danymi, wymaga podawania wartosci w nawiasach klamrowych wewnatrz
innych nawiasow klamrowych:

struct DataUrodzenia {

int r;
int m;
int d;
}s
struct Student {
string nazwisko;
DataUrodzenia dataUr;
s
Student kowalski={’Kowalski”, {2000,10,10}};

Jesli podczas inicjowania obiektu w nawiasach klamrowych nie podamy zadnych
wartosci, to wszystkie sktadowe takiego obiektu bedg wypetnione zerami.

Instrukcja: Jest rownowazna z instrukcjami:

Student nobody={}; nobody . nazwisko=""";
nobody.dataUr.r=0;
nobody.dataUr .m=0;
nobody.dataUr.d=0;

Wskaznik na strukture

Obiekty ze struktury mogg by¢ tworzone z wykorzystaniem operatora new. W takim
przypadku dostep do sktadowych obiektu jest realizowany za pomocg operatora
strzatki sktadajgcej sie z dwoch znakoéw: ->

Przyktad tworzenia tablicy obiektow w sposob dynamiczny:

struct Oscha

string imie;
string nazwisko;
int r ur;

int main()

Oscba *p, *p0;
p=new OscbalZ];
pO=p;
p->imie="Adam";
p->nazwisko="Nowak":
p->r ur=1%86;
p++;_
p->imie="Anna";
p->nazwisko="Malinowska";
p->r ur=1977;
for (int i=0;i<2;i++)
{
cout<< (p0+1) <<™ "<<(pO0+1)->imie<<" "<<(p0+1)->nazwisko<<" "<<(p0+1i)->r ur<<endl;
}
delete [] p:
return O;

Lista jednokierunkowa

Tablice doskonale nadajg sie do przechowywania np. obiektéw utworzonych ze
struktury. Niestety tablica ma kilka wad. Dotozenie lub usuniecie elementu z jej
srodka jest bardzo wolng operacjg, poniewaz zazwyczaj musimy przemiescic przy
tym wiele innych elementow. Rozwigzaniem problemu jest w takiej sytuacji lista.
Liste mozna opisacC jako uszeregowany zbior elementow. Kazdy element zawiera
dane oraz wskazuje na swojego nastepce. Wskazuje, czyli przechowuje adres
nastepnego elementu. Do tworzenia listy swietnie nadajg sie struktury. Ponizej
znajduje sie przyktad struktury, ktora zostanie wykorzystana do utworzenia listy:

Wewnatrz struktury znajduje sie wskaznik na te samag

strukture. Zadaniem tego

wskaznika

bedzie

przechowywanie adresu kolejnej osoby. Jesli to bedzie
ostatnia osoba to wskaznik ten bedzie rowny nullptr.

Do sprawnego postugiwania sie listg
potrzebujemy wskaznika, ktory bedzie
przechowywat adres pierwszego obiektu
naszej listy. Dodawanie nowego obiektu
do listy polega na przydzieleniu pamieci
na obiekt i zapisaniu jego adresu do
wskaznika next ostatniego obiektu listy.
Wyglad listy trzech obiektow pokazuje
schemat:

Adres
obiektu 1:
100

struct Osoba

string imie;
string nazwisko;
Osoba *next;

Adres
obiektu 2:
120

Dane w obiekcie:
imie=Jan

nazwisko=Kowalski

next=120

Dane w obiekcie:

_, imie=Adam

nazwisko=Nowak
next=140

Dane w obiekcie:

_y| imie=Ewa

nazwisko=Kowal
next=nullptr

Usuniecie obiektu z listy
wymaga zmiany wskaznika
next oraz usuniecia obiektu z
pamieci. Jesli usuwamy drugi
obiekt, to najpierw musimy
wykona¢ operacje po ktorej
pierwszy obiekt bedzie
przechowywat adres trzeciego
obiektu. Dopiero wtedy
mozemy usung¢ z pamieci
obiekt ktory byt jako drugi.
Ponize] pokazano przyktad
tworzenia listy oraz dodawania
obiektow do listy:

struct Auto

int

string marka;
Auto *next=nullptr:;
main)

Auto *pierwsze, *nowe, *ostatnie,

nowe=new auto;

"Lemp;

nowe—->marka="audi";
pierwsze=nows;
ostatnie=nowe;

nowe=new suto;

nowe->marka="Volkswagen";
ostatnie-rnext=nowes;
ostatnie=nows;

nowe=new auto;

nowe—>marka="Mercedes";
ostatnie->next=nowe;
ostatnie=nows;

temp=plisrwsze;
while (temp)

count<<temp->marka<<endl;
temp=temp->next;
}

return 0;

Zadanie 25 (prosta baza danych)

Napisz program do utworzenia | zarzadzania prostag
bazg danych tekstowych i numerycznych (np. ksigzki,
przedmioty kolekcjonerskie) z wykorzystaniem listy
jednokierunkowej. Program powinien posiadacC opcje
wypisywania rekordow, dodawania rekordow do bazy,
usuwania niechcianych rekordow oraz modyfikowania
Istniejgcych rekordow.

*Dodatkowym atutem bedzie odczytywanie bazy z
pliku tekstowego i zapisywanie do pliku nowej,
zmodyfikowanej bazy danych.

15. Ztozone typy danych (3)

(unia i typ wyliczeniowy)

-
-
[
-
.
[

CONSTRUCTION

Cwiczenia programistyczne (3)

Zadanie 26 (analiza tekstu)

Napisz program, ktory wczyta caty tekst z pliku
tekstowego, a nastepnie wykona analize ilosci znakow.
Program wypisze iloS¢ wszystkich znakow w tekscie a
nastepnie ilos¢ konkretnych znakow, ale tylko i wytgcznie
tych, ktore w tekscie wystgpity przynajmniej raz.

Cwiczenia programistyczne (4)

Zadanie 27 (problem komiwojazera)

Napisz program, ktory rozwigze problem komiwojazera.
Zdefiniuj w pliku tekstowym (lub wylosuj) wspotrzedne
miejsc dostarczenia przesytek w wybranym kartezjanskim
uktadzie wspotrzednych. Program powinien znalezcC

najkrotszg droge pomiedzy punktami zaczynajgc od
pierwszego z nich.

vindow.fhAsyncinit « function () {

‘ M.iniv(|
appld: "7T1777s402100277°,

cookis: true, sstiosmmnial |

aftml true, Slo-Gnighs S Y

vearsion: ‘v9.0° . S e
"""'&lll?c“.- TN

J’Jl' 3 ', e T = .
-

s = 4. creatallensat(s); Jo.0d = id)
je.are = “mutpei//cossset .

lh.m.mg ?"r
) | docusent, e, * m
; </oaript ' &

;;“g,l.".,a ~ L o bl . ot
ther) image” contaases” |

https://pl.freepik.com

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81
	Slajd 82
	Slajd 83
	Slajd 84
	Slajd 85
	Slajd 86
	Slajd 87
	Slajd 88
	Slajd 89
	Slajd 90
	Slajd 91
	Slajd 92
	Slajd 93
	Slajd 94
	Slajd 95
	Slajd 96
	Slajd 97
	Slajd 98
	Slajd 99
	Slajd 100
	Slajd 101
	Slajd 102
	Slajd 103
	Slajd 104
	Slajd 105
	Slajd 106
	Slajd 107
	Slajd 108
	Slajd 109
	Slajd 110
	Slajd 111
	Slajd 112
	Slajd 113
	Slajd 114
	Slajd 115
	Slajd 116
	Slajd 117
	Slajd 118
	Slajd 119
	Slajd 120
	Slajd 121
	Slajd 122
	Slajd 123
	Slajd 124

