

PROGRAMOWANIE
1

Marek BrancewiczMarek Brancewicz
m.brancewicz@uwb.edu.plm.brancewicz@uwb.edu.pl

https://pl.freepik.com 2025.12.18

mailto:m.brancewicz@uwb.edu.pl

WYKŁAD
1

(01.10.2025)

1. Organizacja zajęć, zasady oceniania

2. Literatura, kursy on-line, zasady korzystania z AI

3. Podstawowe pojęcia

4. Oprogramowanie (MinGw, CodeBlocks)

5. Praca w terminalu (Linux)

WPROWADZENIE

HARMONOGRAM WYKŁADÓW

Wykład Data Tematy

1 01.10.2025

Wprowadzenie. Podstawowe pojęcia. Oprogramowanie. Praca w terminalu Linux’a
(lub wierszu poleceń Windows). Pierwszy program. Podstawowe typy zmiennych.
Wczytywanie danych z klawiatury i wypisywanie ich na ekranie (strumień wejścia-
wyjścia). Instrukcja warunkowa „if”.

2 15.10.2025
Pętle (for, while, do … while). Liczby pseudolosowe. Instrukcja wielokrotnego wyboru
„switch-case”. Pomiar czasu wykonywania programu.

3 29.10.2025
Tablice. Zapisywanie do i czytanie z pliku tekstowego. Złożone typy danych 1
(string).

4 26.11.2025
Funkcje (definicja, struktura, przykłady, przekazywanie tablic do funkcji, wartości
domyślne parametrów funkcji, przeciążanie funkcji, sufiksy danych, przesłanianie
zmiennych). Rekurencja (rekursja).

5 10.12.2025
Wskaźniki. Pojęcie stosu i sterty (stack & heap). Dynamiczna alokacja pamięci.
Tablice alokowane dynamicznie. Arytmetyka wskaźników (inkrementacja i
dekrementacja). Dynamiczna alokacja tablic wielowymiarowych.

6 21.01.2026 Złożone typy danych 2 (struktura).

7 04.02.2026

LIERATURA (PL & ENG)

[1] kursy on-line

[2] modele językowe AI

[3] W. Porębski, Język C++ : wprowadzenie do programowania, wyd.
2, Komputerowa Oficyna Wydawnicza "Help", Warszawa 1999

[4] J. Grębosz, Symfonia C ++ standard : programowanie w języku
C++ orientowane obiektowo, Wydawnictwo "Edition 2000" :
Oficyna Kallimach, Kraków 2005

[5] S. Prata, Język C++, wyd. 5, Wydawnictwo Helion, Gliwice 2006

[6] A. Koenig, Accelerated C++ : practical programming by example,
22nd printing, Addison-Wesley, Boston 2013

Program komputerowy Sekwencja symboli opisująca realizowanie
obliczeń zgodnie z pewnymi regułami zwanymi językiem programowania.
Program jest zazwyczaj wykonywany przez komputer (np. wyświetlenie strony
internetowej), zwykle bezpośrednio, jeśli wyrażony jest w języku zrozumiałym dla
danej maszyny lub pośrednio – gdy jest interpretowany przez inny program
(interpreter). Program może być ciągiem instrukcji opisujących modyfikacje stanu
maszyny, ale może również opisywać obliczenia w inny sposób (np. rachunek
lambda)

Kod źródłowy Zapis programu komputerowego przy pomocy określonego
języka programowania, opisujący operacje, jakie powinien wykonać komputer na
zgromadzonych lub otrzymanych danych. Kod źródłowy jest wynikiem pracy
programisty i pozwala wyrazić w czytelnej dla człowieka formie strukturę oraz
działanie programu komputerowego. Jest on zwykle zapisywany w pliku
tekstowym.

Język programowania Zbiór zasad określających, kiedy ciąg symboli
tworzy program komputerowy oraz jakie obliczenia opisuje.

PODSTAWOWE POJĘCIA

Kompilator Program służący do automatycznego tłumaczenia kodu napisanego
w jednym języku (języku źródłowym) na równoważny kod w innym języku (języku
wynikowym). Proces ten nazywany jest kompilacją. W informatyce kompilatorem
nazywa się najczęściej program do tłumaczenia kodu źródłowego w języku
programowania na język maszynowy. Niektóre z nich tłumaczą najpierw do języka
asemblera, a ten na język maszynowy jest tłumaczony przez asembler.

Język maszynowy
(kod maszynowy)
Zestaw rozkazów procesora, w którym zapis
programu wyrażony jest w postaci liczb binarnych
stanowiących rozkazy oraz ich argumenty.

Zintegrowane środowisko programistyczne
(IDE, od ang. integrated development environment) – program lub zespół
programów (środowisko) służących do tworzenia, modyfikowania, testowania i
konserwacji oprogramowania.

Interpreter Analizuje kod źródłowy programu, a przeanalizowane fragmenty
wykonuje. Realizowane jest to w inny sposób niż w procesie kompilacji, podczas
którego nie wykonuje się wejściowego programu (kodu źródłowego), lecz tłumaczy
go do wykonywalnego kodu maszynowego lub kodu pośredniego, który jest
następnie zapisywany do pliku w celu późniejszego wykonania.

Wykonanie programu za pomocą interpretera jest wolniejsze, a do tego zajmuje
więcej zasobów systemowych niż wykonanie kodu skompilowanego, lecz może zająć
relatywnie mniej czasu niż kompilacja i uruchomienie. Jest to zwłaszcza ważne przy
tworzeniu i testowaniu kodu, kiedy cykl edycja-interpretacja-debugowanie może
często być znacznie krótszy niż cykl edycja-kompilacja-uruchomienie-debugowanie.

Debugger Program komputerowy służący do dynamicznej analizy innych
programów, w celu odnalezienia i identyfikacji zawartych w nich błędów, zwanych z
angielskiego bugami (robakami). Proces nadzorowania wykonania programu za
pomocą debuggera określa się mianem debugowania. Debugger jest standardowym
wyposażeniem większości współczesnych środowisk programistycznych.

Code::Blocks – to darmowe, wieloplatformowe
środowisko programistyczne (IDE) przeznaczone głównie do programowania w C,
C++ i Fortranie. Oferuje edytor kodu z podświetlaniem składni, debugger, system
projektów oraz integrację z popularnymi kompilatorami, takimi jak GCC (MinGW)
czy Clang. Dzięki modułowej budowie (pluginy) można je łatwo rozszerzać o
dodatkowe funkcje.

MinGW (Minimalist GNU for Windows) – to środowisko
programistyczne umożliwiające kompilację kodu źródłowego w systemie Windows
za pomocą narzędzi GNU, takich jak GCC (GNU Compiler Collection), GDB czy
Make. Dostarcza minimalny zestaw bibliotek i nagłówków umożliwiających
tworzenie natywnych aplikacji Windows (bez potrzeby użycia warstwy zgodności,
jak Cygwin). MinGW obsługuje języki C, C++, Fortran i inne, a jego rozszerzeniem
jest MinGW-w64, wspierające zarówno architektury 32-, jak i 64-bitowe.

OPROGRAMOWANIE

PRACA W TERMINALU (LINUX)

Terminal to tekstowy interfejs użytkownika, który wyświetla tekst,
pozwala wpisywać komendy i przekazuje je dalej do powłoki (np. bash).

Bash (Bourne Again SHell) to powłoka systemowa (shell) czyli program
pośredniczący między użytkownikiem a jądrem systemu Linux. W skrócie –
Bash to program, który interpretuje (CLI - Command Line Interpreter)
komendy wpisywane w terminalu.

Bash to nie tylko interpreter ale również pełnoprawny język skryptowy, w
którym sekwencję poleceń można zapisać do pliku *.sh, (np. run.sh):

#!/bin/bash
echo "Kompiluję program..."
g++ main.cpp -o main
echo "Uruchamiam:"
./main

A następnie nadać (+) temu skryptowi
uprawnienia do wykonywania (x)
poleceniem chmod (change mode):

chmod +x run.sh
./run.sh

#! – shebang (sharp+bang), mówi
systemowi, który interpreter ma

wykonać skrypt

Kompilacja i uruchamianie programu w terminalu

Podstawy nawigacji w terminalu Linuxa

pwd
ls
cd folder
cd ..
g++ --version
g++ -v

g++ program.cpp

● wyświetla katalog bieżący
● wyświetla zawartośc bieżącego katalogu
● przejście do katalogu folder
● wyjście z katalogu „piętro wyżej”
● wyświetla wersję kompilatora g++
● szczegółowe informacje o środowisku kompilacji

● kompilacja domyślna, tworzy plik
wykonywalny o nazwie a

chmod +x compile.sh
./ compile.sh

g++ program.cpp -o program ● kompilacja z tworzeniem pliku
wyjściowego o nazwie program

Jeżeli polecenia będą w skrypcie basha, np. compile.sh:
● nadaj skryptowi atrybut wykonywalności
● uruchom skrypt

PRACA W WIERSZU POLECEŃ (cmd)
lub PowerShell (WINDOWS)
CMD (Command Prompt) to najstarszy i najprostszy odpowiednik
terminala i powłoki w Windows, gdzie skryptami są pliki tekstowe *.bat lub
*.cmd. Prosty, dostępny ale o dość ograniczonej funkcjonalności i
niekompatybilny z systemami opartymi na poleceniach Unix-a (pierwowzór
Linux-a, Linux jest jego wolną implementacją).

PowerShell to nowoczesny odpowiednik Bash-a stworzony przez
Microsoft. Terminal: PowerShell Console (albo Windows Terminal),
powłoka: powershell.exe (lub pwsh), skrypty: *.ps1. Jest potężnym
językiem skryptowym z obsługą obiektów (nie tylko tekst jak w Bashu). Nie
jest kompatybilny z poleceniami Unix-a i ma mniej zwięzłą składnię.

Istnieją tzw. emulatory Basha dla Windows, np. Git Bash (niemal pełna
zgodność z Bash) lub WSL (Windows Subsystem for Linux), który
zapewnia 100% zgodności z Bash-em.

PowerShell Execution Policy

Trwałe włączenie wykonywania skryptów PowerShell dla bieżącego użytkownika
(najczęściej używane przez programistów).

Włączenie wykonywania skryptów PowerShell w bieżącej sesji (po zamknięciu
okna wraca do domyślnych ustawień).

Wyłączenie wykonywania skryptów PowerShell dla bieżącego użytkownika (powrót
do domyślnych ustawień).

Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned

Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass

Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy Restricted

Przewaga terminala nad IDE
1) Pełna kontrola nad kompilacją i linkowaniem. Programista widzi wszystkie
opcje, sam je wybiera i decyduje o wszystkim, ma pełna kontrolę nad
optymalizacją, co jest kluczowe dla wydajności i przenośności kodu, pomaga
zrozumieć strukturę projektu, etapy kompilacji i błędy. IDE ukrywa ten proces co
jest wygodne ale mniej edukacyjne.

2) Automatyzacja i powtarzalność (Makefile, Bash). W terminalu łatwo tworzy się
skrypty, które automatyzują budowanie i testowanie aplikacji. Terminalowe skrypty
są lekkie i przenośne. IDE trzeba konfigurować ręcznie na każdym komputerze.

3) Praca na zdalnych systemach (np. serwery obliczeniowe, HPC). Na klastrach,
superkomputerach, serwerach linuksowych nie ma środowisk graficznych (GUI).
Tam jedynym sposobem jest terminal (SSH + kompilacja wierszem poleceń).
Dlatego naukowcy, inżynierowie i administratorzy systemów muszą umieć
pracować w CLI (np.. Bash). Nikt na klastrze obliczeniowym nie uruchamia IDE.

4) Terminal jest szybszy i lżejszy. Nie wymaga graficznego interfejsu, uruchamia
się natychmiast, nie zużywa zasobów systemowych. Dla małych testów lub krótkich
programów jest po prostu najefektywniejszy.

5) Uniwersalność i niezależność od środowiska. Skrypty kompilujące działają
na systemach tam, gdzie często nie ma IDE.

1. Pierwszy program w C++ ("Hello world")

2. Struktura programu

3. Typy zmiennych, zmienne globalne i lokalne

4. Wczytywanie danych z klawiatury i wypisywanie ich na
ekranie.

PIERWSZY PROGRAM

#include <iostream> // dyrektywy preprocesora,
 // tu dołączanie kontenerów wejścia/wyjścia

using namespace std; // przestrzeń nazw std

 // definicje zmiennych globalnych

int main()
{

 cout << "HELLO WORLD!" << endl;

 return 0; // kod błędu

}

Struktura programu

● dyrektywy preprocesora (#), np: dołączanie kontenerów do
programu (#include <iostream>), definicje stałych
(#define grav 9.81)

● using namespace std; (przestrzeń nazw)

● definicje zmiennych (globalnych) i stałych (np. int x,n;
const float pi=3.1415926;)

● funkcja główna (sterująca) – int main() {}
● return 0; (zwraca kody błędów)
● białe znaki (spacje, entery) są ignorowane
● każda linia powinna się kończyć średnikiem (;) (są wyjątki)

● komentarze: // (jedna linia) lub /* (początek) i */ (koniec)

Nazwa
Rozmiar

[B]
(32 bit)

Rozmiar
[B]

(64 bit)
Zakres

bool 1 1 prawda (1) albo fałsz (0)

char 1 1 -128 –> 127

unsigned char 1 1 0 –> 255

short 2 2 -32 768 –> 32 767

unsigned short 2 2 0 –> 65 535

int 4 4 -2 147 483 648 –> 2 147 483 647

unsigned int 4 4 0 –> 4 294 967 295

long 4 4 -2 147 483 648 –> 2 147 483 647

unsigned long 4 4 0 –> 4 294 967 295

long long 8 8 -9 223 372 036 854 775 808 –> 9 223 372 036 854 775 807

unsigned long long 8 8 0 –> 18 446 744 073 709 551 615

float 4 4 3.4 E+/-38 (7 cyfr)

double 8 8 1.7 E+/-308 (15 cyfr)

long double 8 12 1.7 E+/-308 (15/20 cyfr)

string 4 4 tablica (łańcuch) znaków (char) [wskaźnik !]

PODSTAWOWE TYPY ZMIENNYCH

#include <iostream>
using namespace std;
int main()
{
 cout<<"size of bool = "<<sizeof(bool)<<endl;
 cout<<"size of char = "<<sizeof(char)<<endl;
 cout<<"size of int = "<<sizeof(int)<<endl;
 cout<<"size of long = "<<sizeof(long)<<endl;
 cout<<"size of long long = "<<sizeof(long long)<<endl;
 cout<<"size of float = "<<sizeof(float)<<endl;
 cout<<"size of double = "<<sizeof(double)<<endl;
 cout<<"size of string = "<<sizeof(string)<<endl;
 return 0;
}

Sprawdzanie rozmiarów zmiennych

Zmienna lokalna Zmienna zdefiniowana i dostępna wyłącznie w określonym
bloku programu, tworzona w momencie wejścia do tego bloku oraz usuwana z
pamięci w momencie wyjścia z danego bloku. Tym samym zasięg zmiennej lokalnej
oraz czas jej życia pokrywają się i obejmują blok, w którym zmienna lokalna jest
zdefiniowana. Zmienna lokalna ma więc określony, ograniczony zakres istnienia i
dostępności.

To w jakich blokach programowych można tworzyć zmienne lokalne definiuje
składnia konkretnego języka programowania. Typowymi blokami, w których można
w różnych językach programowania tworzyć zmienne lokalne, są moduły,
podprogramy oraz w pewnych językach programowania także instrukcje blokowe
(lub inne instrukcje strukturalne, np. pętla for w języku C.

Zmienna lokalna w danym bloku przesłania zdefiniowaną zmienną globalną lub
zmienną lokalną z bloku nadrzędnego o tym samym identyfikatorze. Tym samym
programista nie może wprost, za pomocą danego identyfikatora, w bloku o
zdefiniowanej zmiennej lokalnej, odwołać się do zmiennej zewnętrznej o tym
samym identyfikatorze co zdefiniowana zmienna lokalna, choć może to zrobić za
pomocą innych konstrukcji, jeżeli są dostępne w danym języku programowania, np.
selekcja, wskaźnik, przemianowanie, nakładanie zmiennych lub inne.

Zmienna globalna Zmienna istniejąca przez cały czas życia programu i
widziana z wielu miejsc w programie. W C++ każda zmienna globalna jest zmienną
statyczną.

int ndiv; // deklaracja zmiennej całkowitej
float x,y,z; // deklaracja zmiennej zmiennoprzecinkowej
string t; // deklaracja zmiennej tekstowej (?)
int main()
{
 cout<<"Podaj liczbe : ";
 cin>>x;
 cout<<"Podana liczba to : "<<x<<endl<<endl;
 cout<<"Napisz tekst : ";
 cin>>t;
 cout<<"Napisales : "<<t<<endl;
 return 0;
}

WCZYTYWANIE DANYCH
Z KLAWIATURY I WYPISYWANIE ICH NA EKRANIE

Przykłady:

1. Weryfikacja kodu dostępu (PIN)

2. Logowanie z nazwą użytkownika i hasłem

Czyli jak nauczyć komputer podejmowania decyzji...

INSTRUKCJA WARUNKOWA „if”

Typy zmiennych do wykorzystania:
int – liczba całkowita (np. int PIN, pin, Pin;)

string – tekstowa (np. string password=”a12b34c”;)

bool – logiczna, prawda (1) lub fałsz (0) (np. bool c;)

Operatory porównania (wyrażenia boolowskie):

== logiczne porównanie (a==b)

< mniejsze niż (a<b)

> większe niż (a>b)

<= mniejsze lub równe (a<=b)

>= większe lub równe (a>=b)

!= nie równe (a!=b)

Operatory logiczne:
&& - iloczyn logiczny "i"

|| - suma logiczna "lub"

! - zaprzeczenie logiczne (negacja) "nie"

Ćwiczenie:
x=3, a=7

Określ wartość wyrażenia logicznego:

!((x<=5)||(x>12)||(a!=7)&&(a>15))

Pytanie:
Jaka zmienna będzie odpowiednia do przechowywania PIN?

if (a>2) // warunek logiczny 1
{
 // instrukcje 1, np.:
 cout << "a is greater than 2" << endl;
}
else if (a<2) // warunek logiczny 2
{
 // instrukcje 2, np.:
 cout << "a is smaller than 2" << endl;
}
else // pozostałe przypadki
{
 // instrukcje w pozostałych przypadkach. np.:
 cout << "a is equal 2" << endl;
}

Składnia „if”

cin.fail();

cin.clear();

cin.ignore();

cin.ignore(1000,'\n');

Sprawdzanie poprawności danych
strumienia wejściowego

Sprawdza poprawność strumienia wejściowego, zwraca
PRAWDA, jeżeli operacja wejścia zakończyła się błędem.

Resetuje (czyści) stan błędu.

Usuwa (ignoruje) pozostałą zawartość strumienia;
jeden znak lub 1000 znaków do końca linii.

LABORATORIUM
1 (01.10.2025)

2, 3 (08.10.2025)

Zadanie 1
(Wczytywanie i wyświetlanie liczb i tekstów, podstawowe działania)

Napisz prosty program wczytujący liczby (całkowite lub
rzeczywiste) z klawiatury, wykonaj proste obliczenia na
wczytanych danych (np. dodawanie) i wypisz wynik działania na
ekranie z odpowiednim opisem (komentarzem). W programie
wykorzystaj deklarację zmiennych liczbowych i tekstowych.

Sprawdź co się stanie jeżeli zamiast liczby wprowadzisz tekst i
odwrotnie. Przetestuj podstawowe działania na liczbach tych
samych typów (int oraz float) oraz na różnych. Sprawdź co się
stanie przy próbie dzielenia przez 0.

Zadanie 2
(Sprawdzanie wieku kandydata na prezydenta)

Napisz program, który zapyta użytkownika o rok urodzenia i na tej
podstawie określi jego wiek. W zależności od wieku kandydata
program ma sprawdzić czy jest on osoba pełnoletnią (18+) i czy może
kandydować na stanowisko prezydenta (35+). W zależności od wieku
kandydata program ma wyświetlić odpowiedni komentarz. Można
rozbudować program o inne opcje związane z wiekiem.

Zadanie 3
(Rozwiązywanie równania kwadratowego)

Napisz program do rozwiązywania równania kwadratowego o postaci:
ax2+bx+c=0, na podstawie wczytywanych parametrów a, b i c.
Zastosuj instrukcję warunkową „if” w celu wykonania odpowiednich
obliczeń i komentarzy w zależności od wartości parametru delta. W
razie potrzeby wykorzystaj bibliotekę <cmath>.

WYKŁAD
2

(15.10.2025)

● pętla – instrukcja powtarzalna (iteracyjna)

● iteracja – pojedyncze wykonanie pętli

● iterator – licznik (przechowuje numer iteracji)

Pętle w C++:
● for
● while
● do ... while

PĘTLE

for (int i=1;i<=10;i++)
{
 cout<<i<<endl;
}

Inkrementacja: i++ to samo co i=i+1 oraz i+=1

Dekrementacja: i-- to samo co i=i-1 oraz i-=1

wartość początkowa
iteratora

wyrażenie logiczne
(pętla się wykona jeżeli prawda)

zmiana iteratora w każdym kroku

Iterator
(musi być integer)

Pętla ”for” (kontrolowana iteratorem)

zestaw instrukcji do wykonania

while (log. condition)

{

 instructions;

}

do

{

 instructions;

} while (log. condition);

Pętle ”while”, ”do … while”
(kontrolowane warunkiem logicznym, nie posiadają iteratora)

Zestaw instrukcji może się
nie wykonać ani razu.

Zestaw instrukcji wykona
się przynajmniej raz.

W obu przypadkach zestaw wykonywanych instrukcji powinien wpływać na zmianę
warunku logicznego, który zakończy wykonywanie pętli. W innym przypadku pętle
nie skończą się, co może być pożądanym efektem (wyjątkowo).

Zagnieżdżanie pętli (pętla w pętli)
Można zagnieżdżać różne rodzaje pętli wewnątrz innych pętli.

Przykład – podwójna pętla "for":

Przerywanie działania pętli

break; //przerwanie wykonywania
pętli, jeśli wystąpi w pętli
wewnętrznej to tylko ta zostanie
przerwana

continue; //przerywa wykonywanie
danej iteracji pętli, program
przechodzi do kolejnej iteracji
(tej samej pętli)

● Kompilator GCC posiada wbudowane funkcje
generujące liczby losowe (np. rand), ale jak one
działają?

● Czas w komputerze (Unix time, POSIX time) -
liczba sekund od 01.01.1970 i cały czas się zmienia

● Jak zamienić tą liczbę (np. 1 234 567 890) na
„losową” liczbę, powiedzmy od 1 do 100?

● Zastosować operację reszty z jej dzielenia przez
100; wynik będzie od 0 do 99 (np.:1229 % 100 =
29), potem można dodać 1.

LICZBY (PSEUDO)LOSOWE

Obliczanie kolejnych liczb losowych

x
1
=(s+b)%n – zaczynamy od liczby zależnej od czasu

x
2
=(s+x

1
+b)%n

x
3
=(s+x

2
+b)%n ... i tak dalej ...

x
i
 – kolejna liczba (pseudo)losowa

s – Unix time
n – liczba wylosowanych liczb lub zakres (0 ... n-1)
b – jakaś stała (np. 1)

Funkcje losujące liczby naturalne

#include <cstdlib>

rand()%n; // liczba losowa od 0 do n-1

rand()%n+1; // liczba losowa od 1 do n

// przykladowy zakres od 51 do 75 (25 liczb):

rand()%25; // liczba losowa od 0 do 24

rand()%25+51; // liczba losowa od 51 do 75

Ile jest liczb całkowitych od 51 do 75

Randomizacja

#include <ctime>

srand(time(nullptr)); // rozpoczyna randomizacje z
wykorzystaniem czasu komputera, stosujemy raz w
programie, przed pierwszym uzyciem funkcji rand()

RAND_MAX // maksymalna liczba losowa

switch (choice)
{
 case 1:
 {
 // instrukcje gdy choice==1
 }
 break; // koniecznie!
 case 2:
 {
 // instrukcje gdy choice==2
 }
 break; // koniecznie!
 case 3:
 {
 // instrukcje gdy choice==3
 }
 break; // koniecznie!
 default:
 {
 // instrukcje gdy choice jest inne niż wyżej
 }
}

zmienna kontrolna:
int
char
float
string

Składnia

INSTRUKCJA WIELOKROTNEGO
WYBORU „switch … case”

Użyteczne

break; // zatrzymuje pętle i przechodzi dalej

exit(0); // (#include <cstdlib>) kończy program i zwraca 0

system("cls"); //(#include <cstdlib>) czyści terminal (Windows)

system("clear"); //(#include <unistd.h>) czyści terminal (Linux)

getch(); // (#include <conio.h>) czeka na wcisnięcie dowolnego klawisza

Nieskończone pętle
while(true);

for(;;);

Pomiar czasu

#include <ctime>

float sum=0, add=1, elapsed;
clock_t start, stop; // zmienne clock_t
int iterations=1000*1000*1000;

int main ()
{
 start=clock(); // start pomiaru czasu
 for (int i=0;i<iterations;i++)
 {
 sum+=add;
 add/=2.0;
 }
 stop=clock(); // stop pomiaru czasu
 elapsed=float(stop-start)/CLOCKS_PER_SEC;
 cout<<"Time measured: "<<elapsed<<endl;
 return 0;
}

LABORATORIUM
4 (15.10.2025)

5, 6 (22.10.2025)

Zadanie 4
Stosując podane poniżej rozwiązania, napisz program, który
będzie udawał odliczanie do startu rakiety (z dźwiękiem).
Program powinien odliczać od 10 do 1 co 1 sekundę i napisać
"START", gdy licznik dojdzie do 0.

#include <windows.h> // windows

#include <unistd.h> // linux

Sleep(1000) // czekaj 1000 ms

Beep(2000,500) // dźwięk (f[Hz], t[ms])

system("cls") // windows

system("clear") // linux

Zadanie 5
Rysunek przedstawia przyrost populacji bakterii w czasie.
Napisz program, który będzie liczył liczebność populacji po
upływie kolejnych godzin aż do osiągnięcia 1 000 000 000
organizmów. Zastosuj pętlę "while".

1h

1h

1h

0 h – population = 1
1 h – population = 2
2 h – population = 4
3 h – population = 8
...

Zadanie 6
a) Napisz program, który zapyta użytkownika o liczbę dodatnią.
Jeżeli użytkownik poda liczbę ujemną lub zero, program poprosi
ponownie o podanie dodatniej liczby. Program powinien
powtarzać próbę wczytania dodatniej liczby do momentu, gdy
użytkownik taką liczbę poda lub zakończyć działanie po
ustalonej liczbie nieudanych prób. Zastosuj pętlę „do...while”.

b) Napisz program, który zapyta użytkownika o liczbę
rzeczywistą. Jeżeli użytkownik wprowadzi błędną zmienną do
strumienia wejściowego to program zapyta ponownie o podanie
liczby rzeczywistej. Program ma działać w pętli aż do momentu,
gdy użytkownik wprowadzi prawidłową liczbę rzeczywistą lub
zakończy działanie po ustalonej liczbie nieudanych prób.

Zadanie 7
Napisz program, który podobnie jak w losowaniu LOTTO
wybierze losowo 6 liczb spośród 49 i wypisze je na ekranie.
Zastanów się czy program faktycznie działa jak losowanie
LOTTO. Jeżeli nie to dlaczego? Popraw wówczas program tak,
aby działał jak losowanie LOTTO.

Zadanie 8
Napisz program (grę), który wylosuje liczbę od 1 do 100 i
poprosi użytkownika o jej zgadnięcie. Po próbie odgadnięcia
program powinien wyświetlić odpowiedni komentarz, np.:
„Zgadłeś”, „Za duża” lub „Za mała”. Program powinien pamiętać
numer próby i po odgadnięciu wypisać go na ekranie wraz ze
słowem „Zgadłeś”. Zastosuj pętlę „while” („do … while”) oraz
instrukcję warunkową „if”.

Zadanie 9
Napisać program do generowania liczb rzeczywistych z
zakresu, który użytkownik poda z klawiatury. Wykorzystaj
metodę generowania liczb całkowitych poznaną na zajęciach w
połączeniu z odpowiednimi operacjami matematycznymi.

Zadanie 10
Napisz program – kalkulator, z wykorzystaniem instrukcji
wielokrotnego wyboru „switch case”. Program będzie wyświetlał
menu główne z dostępnymi operacjami matematycznymi.
Spraw, żeby program działał w pętli, dopóki użytkownik nie
wybierze opcji WYJŚCIE z menu.

Zadanie 11
Napisz program do obliczania przybliżonej wartości liczby PI metodą Monte
Carlo. Algorytm: 1) Wylosuj n współrzędnych punktów (par liczb) wewnątrz
kwadratu o boku 2r (r-dowolne) i środku w początku układu współrzędnych.
2) Sprawdź ile z nich (m) mieści się wewnątrz okręgu o promieniu r i środku
w początku układu współrzędnych. 3) Zauważ, że stosunek pól tych figur
powinien być taki jak stosunek odpowiednich ilości punktów wewnątrz
kwadratu i okręgu i można z niego łatwo policzyć wartość PI. Spraw, aby
program działał w pętli licząc PI dla liczb n=10, 100, 1000 ..., czyli dla
kolejnych potęg 10. Ustaw liczbę tych pętli (potęg) tak, aby czas działania
programu nie przekraczał minuty (około). Na ekranie wypisuj: nr iteracji,
liczbę wylosowanych punktów n, obliczone PI, względną różnicę między
rzeczywistą liczbą PI a obliczoną, czas trwania iteracji.

WYKŁAD
3

(29.10.2025)

Tablica – zmienna złożona reprezentująca uporządkowany
(ponumerowany) zestaw zmiennych jednego typu

1 3 5 7 11 13 17 19 23 29

typ danych

nazwa tablicy rozmiar tablicy,w przypadku tablicy statycznej jej
rozmiar musi być wartością stałą, znaną na etapie
kompilacji

 0 1 2 3 4 5 6 7 8 9 10

numeracja: od 0 do rozmiar-1 index

nawiasy kwadratowe są
zarezerwowane w C++
wyłącznie dla tablic

ostrożnie z
wywoływaniem
tej zmiennej !!!

int dane[10];deklaracja:

TABLICE (MACIERZE)

index – unikalny numer miejsca w tablicy (pozycja)

Przykład użycia (odwołania do elementu):
cout<<dane[3]; //wypisz element o indeksie 3
cin>>dane[i]; //zapisz do elementu o indeksie i

Zmienne typu „string” są tablicami liter:
string slowo="computer";

cout<<slowo[3]; //wypisze literę "p" na ekranie

Wielowymiarowe tablice:
float macierz[5][4]; //macierz 2D
double dane[10][10][10][10][10]; //macierz 5D

c o m p u t e r \0
 0 1 2 3 4 5 6 7 8

NULL sign
(koniec

łańcucha)

ZAPISYWANIE DO PLIKU TEKSTOWEGO

#include <fstream> // nagłówek biblioteki do obsługi plików

fstream plik1; // tworzenie obiektu plik1 klasy fstream

// tryb zapisu | dodawanie zawartości

plik1.open("filename.txt",ios::out|ios::app);
// otwiera plik w aktualnej lokalizacji, jeżeli nie istnieje – będzie utworzony

plik1<<x<<" "<<y<<endl;
// zapisanie zmiennych x i y rozdzielonych 3 spacjami do pliku

(kierowanie strumienia wyjściowego do obiektu plik1)

plik1.close();
// zamykanie pliku, ważne, zawsze zamknij plik jeżeli został otwarty !

OBIEKTOWOŚĆ !!!
open, close, good, eof są metodami pracującymi na obiekcie plik1 klasy fstream

plik1.open("filename.txt",ios::in); //tryb odczytu

plik1.good(); // (prawda, jeżeli otwieranie pliku powiodło się,
 // fałsz, jeśli nie lub plik nie istnieje)

plik1.eof(); // prawda, jeżeli podczas czytania osiągnięto koniec pliku

plik1>>a; // czytanie jednej zmiennej z pliku, zapisywanie
 // jej na zmienną a, (kierowanie strumienia
 // wyjściowego z obiektu plik1 na zmienną a)

plik1>>a>>b>>c; //czytanie kolejno 3 zmiennych z pliku,
 // zapisywanie ich na zmienne a, b, c,
 // i przejście do następnej linii

 // Powyższą metodę najczęściej stosujemy gdy wczytujemy
 // dane uporządkowane o znanym typie.

plik1.close(); //pamiętaj, żeby zamknąć plik po odczycie

CZYTANIE Z PLIKU TEKSTOWEGO

#include <cstdlib>

getline(plik1,linia); //czyta całą linię z plik1 (bez względu na
 // to co się w niej znajduje), zapisuje na
 // zmienną linia typu string i zwraca prawdę

atoi(linia.c_str()); //przekształca string na int lub float

atof(linia.c_str());

Metoda c_str() konwertuje ciąg znaków zapisany
w zmiennej typu string na ciąg który może być

zapisany w tablicy znaków.

ifstream fin("plik.txt"); // tylko czytanie z pliku

ofstream fout("plik.txt"); // tylko pisanie do pliku

fstream file("plik.txt"); // czytanie i/lub pisanie

// używając fstream należy jawnie podać tryb otwarcia, np.:

ios::in // czytanie

ios::out // pisanie

ios::app // dopisywanie

ios::binary // tryb binarny

fstream f1("plik.txt",ios::in); // tylko czytanie

fstream f2("plik.txt",ios::out); // tylko pisanie

fstream f3("plik.txt",ios::in|ios::out);

// czytanie i pisanie

fstream f4("plik.txt",ios::out|ios::app);

// tryb dopisywania

Manipulacja strumieniem wyjściowym
(formatowanie zapisu)

#include <iomanip>

cout<<setprecision(6); // 6 liczb znaczących
cout<<fixed<<setprecision(6); // 6 liczb po przecinku

cout.width(10); // szerokość 10 znaków
cout<<setw(10)<<12.3;

cout<<left<<12.3<<endl; // wyrównanie do lewej
cout<<right<<12.3<<endl; // wyrównanie do prawej

cout.unsetf(std::ios_base::floatfield); // wyłączenie fixed

Otwieranie pliku o nazwie podanej przez użytkownika

#include <fstream> // operacje na plikach
#include <string>

string filename;
ifstream file; // plik do odczytu
cout << "Enter the file name: ";
cin >> filename;
file.open(filename); // otwórz plik

if (!file) {
 cout << "Error: could not open file '";
 cout << filename << "'" << endl;
 return 1; // zakończ z kodem błędu
}

cout << "File '" << filename << "' opened" << endl;
// czytanie z pliku
file.close();

Z obiektów klasy string już korzystamy, są wygodniejsze niż łańcuchy
znaków (c_str lub char). Po dołączeniu biblioteki <string> można
wykonywać takie opreracje jak: konkatenacja (+), porównywanie (==,<),
jak również korzystać z metod takich jak:

● size(), length() // zwracają długość łańcucha
● empty() // sprawdza czy jest pusty
● append("abc") // dodaje tekst na końcu
● substr(pos,len) // zwraca fragment łańcucha
● find("c") // zwraca pierwszą pozycję frazy
● replace(pos,len,str) // zamiana fragmentu łańcucha innym
● erase(pos,len) // usuwa fragment lańcucha
● insert(pos,str) // wstawia tekst w podanym miejscu
● at(i) // zwraca znak na pozycji i
● c_str() // zwraca wskaźnik do klasycznego c_string -a

ZŁOŻONE TYPY DANYCH
(1) KLASA STRING

#include<string> // C++ (operacje na obiektach klasy string)
#include<string.h> // C (operacje na tablicach char

string napis1; // obiekt napis1 klasy string
char napis2[20]; // tablica znaków typu char

napis1="Ala ma kota 1";
strcpy(napis2,”Ala ma kota 2”);

cout<<napis1<<endl;
cout<<napis2<<endl;

string c; // przykład
c.substr(2,3); obiekt.metoda

A l a m a k o t a \0

0 1 2 3 4 5 6 7 8 9 10 11

65 108 97 32 109 97 32 107 111 116 97 0

Pierwszy znak ma
zawsze index=0 NULL sign kończy łańcuch

Przechowywanie w RAM – tablica znaków (char):

cout<<napis1[4]<<endl;
cout<<napis2[4]<<endl;

Do elementów, które są znakami
typu char dostajemy się w ten
sam sposób.

Przechowywanie w pamięci

znak:

index:

ASCII:

ASCII table
American Standard Code for Information Interchange

duże litery (65-90) + 32 = małe litery (97-122)

cout<<char(4)<<endl; // wypisywanie znaków z tablicy ASCII

int l=napis1.length();

// metoda length działająca na obiekt klasy string
(obiektowość) zwraca długość zmiennej lub numer
ostatniego znaku (null sign)

Wypiszmy numery elementów, znaki,
numery kodów ASCII

"a"= //cudzysłów gdy łańcuch znaków
'a'= //apostrof gdy pojedyncza litera

W strumieniu wejściowym spacja jest traktowana jako separator !

cin>>napis;
getline(cin,napis);

//użycie getline zamiast cin pozwala czytać z
klawiatury napisy zawierające spacje aż do znaku

następnej linii (enter, ¶)

a \0

a

Wczytywanie tekstu/znaku z klawiatury

Konkatenacja – łączenie
string jeden="Ala ma ";
string dwa="kota";
string trzy=jeden+dwa;

Znajdowanie pozycji frazy
string napis="Ala ma kota";
string szuk="ma";
int position=napis.find(szuk);

//jeżeli brak to position=-1

napis.erase(3,5);
//usuwa 5 znaków zaczynając od 3

napis.insert(11,"dostaw");
//wstawia string "dostaw" od pozycji 11

napis.replace(4,2,"zastepstwo");
//zastępuje 2 znaki tekstem "zastepstwo" od pozycji 4

string nowynapis=napis.substr(4,7);
//wycina nowy tekst z 7 kolejnych znaków, ze starego

zaczynając od pozycji 4

Zamiana znaków małe ↔ DUŻE
#include<algorithm>
transform(napis.begin(),napis.end(),napis.begin(),::toupper);

transform(napis.begin(),napis.end(),napis.begin(),::tolower);

Procedura zmiany zmiennej typu string na
tablicę znaków typu char

#include<cstring>

string napis="Ala ma kota";

int n=napis.length(); // zwraca długość łańcucha

char tab_char[n]; // tworzy tablicę znaków

strcpy(tab_char,napis.c_str()); // przepisanie

//funkcja strcpy konwertuje ciąg znaków zapisany w obiekcie
klasy string (metoda c_str() zwraca wskaźnik do tablicy
znaków zakończonej znakiem NULL) na ciąg który może być
zapisany w tablicy znaków (tab_char), może być potrzebne gdy
chcemy korzystać z funkcji języka C jub jego starszych
procedur i funkcji

LABORATORIUM
7 (29.10.2025)

8, 9 (05.11.2025)

Zadanie 12 (Prosta analiza danych)

Napisz program, który wczyta z klawiatury serię liczb
rzeczywistych. Przechowaj wczytane dane w tablicy. Wypisz
wczytane liczby na ekranie w uporządkowany, czytelny sposób.
Następnie program wyznaczy / znajdzie / obliczy i wyświetli na
ekranie następujące parametry: wartość najmniejszą, wartość
największą, sumę liczb, średnią i odchylenie standardowe.

Zadanie 13 (Sortowanie liczb)

Napisz program, który sortuje dużą tablicę liczb w porządku rosnącym
lub malejącym, wykorzystując dwie proponowane metody (algorytmy):
sortowanie bąbelkowe (bubble sort) i sortowanie szybkie (quick sort).

Program powinien: (1) Poprosić użytkownika o podanie rozmiaru
tablicy. (2) Wylosować tablicę liczb rzeczywistych (lub całkowitych) o
podanym rozmiarze. (3) Znaleźć i wyświetlić największy oraz
najmniejszy element tablicy. (4) Posortować tablicę dwoma metodami
(bąbelkową i szybką), mierząc czas wykonania każdej z nich. Po
zakończeniu sortowania wypisać na ekranie: czas sortowania dla
każdej metody, pięć pierwszych oraz pięć ostatnich elementów:
tablicy wylosowanej, tablicy posortowanej metodą bąbelkową, tablicy
posortowanej metodą szybką. Wyniki należy przedstawić np. w formie
tabeli z trzema kolumnami:

Wylosowane Bubble sort Quick sort
===

Zadanie 14 (Prosta baza danych)

Napisz program, który obsługuje prostą bazę danych wczytywaną z pliku
tekstowego. Plik ma strukturę powtarzających się trójek linii: 1. numer
rekordu (liczba całkowita), 2. nazwa (np. imię lub imię i nazwisko), 3. jakaś
liczba (np. rok urodzenia).
Program powinien wczytać wszystkie rekordy do tablic (np. trzy równoległe
tablice: id[], name[], year[]), a następnie umożliwić użytkownikowi
wykonywanie operacji z menu opartego na instrukcji switch-case. Menu
programu ma zawierać następujące opcje:

0. Wyjdź z programu — zakończ działanie.
1. Wyświetl wszystkie rekordy – wypisz dane w czytelnym,

uporządkowanym formacie.
2. Dodaj nowy rekord – dopisz rekord na koniec tablic oraz do pliku.
3. Usuń rekord (dla chętnych) – usuń rekord o podanym numerze i

zaktualizuj plik.
Program powinien działać w pętli, aż użytkownik wybierze opcję
zakończenia. Wczytywanie i zapisywanie danych należy zrealizować z
użyciem bibliotek <fstream> oraz tablic do przechowywania rekordów.

LABORATORIUM
10 (12.11.2025)

11, 12 (19.11.2025)

Zadanie 15 (Czytanie i wyświetlanie danych)

Struktura pliku tekstowego z danymi jest następująca: pierwsze trzy
linie to komentarze – dwie zawierają informacje tekstowe o danych, a
trzecia określa liczbę rekordów.

W kolejnych liniach znajdują się dane liczbowe (rzeczywiste) ułożone
w czterech kolumnach: wielkość fizyczna X, jej niepewność dX,
wielkość fizyczna Y, jej niepewność dY (oddzielone spacjami lub
tabulatorami).

Przygotuj taki plik samodzielnie, korzystając z Notatnika lub arkusza
kalkulacyjnego. Pamiętaj, aby liczby zmiennoprzecinkowe zapisywać
z kropką, zgodnie z notacją angielską.

Napisz program, który: zapyta użytkownika o nazwę pliku z danymi,
wczyta cały plik (dane liczbowe do jednej tablicy), wypisze na ekran
pierwsze trzy linie komentarza, po czym zapyta użytkownika, czy
chce wyświetlić wszystkie dane. Jeśli użytkownik potwierdzi –
program wypisze pełną zawartość tablicy danych, jeżeli nie –
zakończy działanie.

Zadanie 16 (Prosta analiza tekstu)

Napisz program, który poprosi użytkownika o podanie sentencji
(tekstu) do analizy. Program policzy z ilu znaków (łącznie ze znakami
niedrukowalnymi) i wyrazów składa się tekst. Następnie program
poprosi użytkownika o podanie litery do wyszukania w ww sentencji.
Program policzy ile określonych w zapytaniu liter (np. 'a' lub ‘A’) jest w
podanym z klawiatury tekście.

Wielkość liter nie ma znaczenia, zliczamy zarówno duże jak i małe
litery. Wynik wypisujemy na ekranie. Proszę zwrócić uwagę na
możliwość podania dużej lub małej litery, podczas gdy program ma
znaleźć ich liczbę niezależnie od tego, czy w zdaniu występuje litera
mała czy duża.

Zadanie 17 (Szyfr Cezara)

Opracuj prosty schemat szyfrowania oparty na numerach znaków z
tablicy ASCII, np. przesunięcie numeru znaku o jeden lub więcej
("szyfr Cezara"). Osoba szyfrująca* tworzy plik sentence.txt
zawierający zdanie do zaszyfrowania oraz pisze program, który
odczyta to zdanie, zaszyfruje za pomocą klucza (iczba przesunięcia)
a następnie zapisze zaszyfrowane zdanie do pliku encrypted.txt.
Osoba odszyfrowująca* znając klucz szyfru pisze program, który
odczyta zaszyfrowane zdanie, odszyfruje a odszyfrowane zdanie
zapisze do pliku decrypted.txt. Sukcesem jest identyczna zawartość
(co do treści) plików sentence.txt i decrypted.txt.

* Osoba szyfrująca i odszyfrowująca może być jedną i tą samą osobą w celu wykonania zadania.

WYKŁAD
4

(26.11.2025)

FUNKCJE
● Funkcja – podprogram, wydzielony fragment kodu, wykonujący

określone zadanie, który może być wielokrotnie wywoływany. Zwykle
przyjmuje argumenty (ale nie musi), wykonuje operacje i może zwracać
wartość (ale nie musi). Dzięki funkcjom program staje się czytelniejszy,
uporządkowany i łatwiejszy w utrzymaniu. Jest podstawowym
elementem paradygmatu programowania proceduralnego

● Programowanie proceduralne – paradygmat programowania
polegający na podziale kodu na fragmenty (procedury, funkcje)
wykonujące określone zadania. Jest rozszerzeniem paradygmatu
programowania strukturalnego kładącym dodatkowy nacisk na
modularność i wielokrotne użycie kodu poprzez zastosowanie funkcji.

● Programowanie strukturalne - paradygmat programowania polegający
na pisaniu programów w sposób uporządkowany, z wykorzystaniem
trzech podstawowych struktur: sekwencji (kolejno), warunków
(logicznych) i pętli. Program dzieli się na mniejsze, czytelne fragmenty
(np. funkcje) a przepływ sterowania odbywa się w sposób przewidywalny
– bez skoków typu goto. Dzięki temu kod jest prostszy, bardziej czytelny
i łatwiejszy do utrzymania.

● Funkcja główna w C++ (int main()) – zarządza pozostałymi
funkcjami (jeżeli istnieją)

● Deklaracja funkcji może, ale nie musi zawierać nazw argumentów
formalnych, może być po prosu kopią definicji (nagłówka).

● Do funkcji wysyłane są kopie wartości argumentów poprzez
argumenty formalne, funkcja nie ma dostępu do oryginalnych
zmiennych (aktualnych argumentów), tylko do ich wartości.
Wszelkie operacje są wykonywane na kopii i nie są widoczne
poza blokiem funkcji.

● Instrukcja return oznacza powrót z funkcji do miejsca jej
wywołania. Wykonanie instrukcji return powoduje zakończenie
wykonywania funkcji (również main()). Jeśli funkcja powinna coś
zwrócić to zwracana rzecz (wartość lub zmienna) pojawia się po
słowie return. W obrębie jednej funkcji może pojawić się więcej
niż jedna taka instrukcja. Jeżeli funkcja nic nie zwraca to po
return; jest średnik lub pomijamy return.

Przykład 1
(Funkcja do obliczania potęgi)

#include <iostream>

using namespace std;

float num=2.3; //zmienne globalne (każda funkcja ma dostęp)
int pow=4;

float power(float,int); //deklaracja funkcji; typ wyniku, nazwa,
typy parametrów wejściowych, nawiasy okrągłe

int main() //funkcja sterująca (główna)
{ //argumenty aktualne
 cout<<power(num,pow)<<endl; //wywołanie funkcji
 return 0;
}
 //argumenty formalne (może być bez)
float power(float a,int n) //definicja funkcji (nagłówek)
{
 float b=a; //ciało funkcji; zmienne lokalne, operacje
 for(int i=2;i<=n;i++)
 b*=a;
 return b; //zwracana wartość
}

// umieszczenie definicji funkcji i jej ciała przed main() - nie trzeba
// wcześniej deklarować, ale jak jest więcej takich funkcji to robi się
// niepraktyczne (kwestia subiektywna)

void main_menu() //void – nie zwraca nic (kiedyś procedura)
{
 cout<<" TYTUL PROGRAMU "<<endl;
 cout<<"===================="<<endl;
 cout<<" Wybierz opcje:"<<endl;
 cout<<" 1. Zrob to"<<endl;
 cout<<" 2. Zrob tamto"<<endl;
 cout<<" 3. Wyjscie"<<endl;
 // nie ma return, może być, ale bez wartości zwracanej
}

int main()
{
 main_menu(); // wywołanie funkcji
 // reszta programu
 return 0;
{

// Można się zastanowić, czy warto, żeby funkcja menu() zwracała
// coś, np. liczbę odpowiadającą wybranej opcji.

Przykład 2
(Funkcja do wyświetlania menu)

double fun1(double);
//zwraca liczbę double, przyjmuje liczbę double

float fun2(float x,float y);
//zwraca liczbę float, przyjmuje dwie liczby float

void fun3(float x,int y);
//niczego nie zwraca, przyjmuje liczbę float oraz int

void fun4();
//niczego nie zwraca, niczego nie przyjmuje

Przykładowe deklaracje

Tablice są przekazywane do funkcji inaczej niż standardowe
zmienne. W przypadku tablic do funkcji zawsze trafia oryginalna
zawartość tablicy, co oznacza, że jeśli funkcja zmieni coś w tablicy, to
po zakończeniu jej wykonywania ta zmiana będzie zmianą trwałą.

Szczegółowo mechanizm przekazywania tablic do funkcji zostanie
przedstawiony podczas omawiania wskaźników. Teraz musi
wystarczyć nam wiedza o tym jak stworzyć funkcję przyjmującą jako
parametr tablicę i jak taką funkcję wywołać.

Przekazując tablicę do funkcji nie podajemy jej rozmiaru, ale
możemy np:

void WypiszTab(int tab[5],int rozmiar)

Kompilator nie bierze pod uwagę liczby która pojawia się w
nawiasach kwadratowych przy nazwie tablicy.

Przeanalizuj poniższe przykłady:

Przekazywanie tablic do funkcji

void WypiszTab(int tab[],int rozmiar)
{
 for(int i=0;i<rozmiar;i++)
 cout<<tab[i]<<" ";
 cout<<endl;
}

void PowiekszTab(int tab[],int rozmiar)
{
 for(int i=0;i<rozmiar;i++)
 tab[i]++; //zwiekszamy elementy tablicy o 1
}

int main()
{
 const int r=7;
 int t[r]={1,2,3,4}; //reszta zostanie wypełniona zerami
 WypiszTab(t,r);
 PowiekszTab(t,r);
 WypiszTab(t,r);
 return 0;
}

Wartości domyślne parametrów funkcji

Parametrom funkcji można przypisać wartości domyślne. Jeśli
parametr ma przypisaną wartość domyślną, to podczas wywoływania
tej funkcji nie musimy podawać jego wartości, w takiej sytuacji będzie
on miał przypisaną wartość domyślną. Jeśli jednak podamy wartość
dla danego parametru, to przyjmie on taką wartość jak została
podana podczas wywołania funkcji. Przykład:

void NapiszTekst(string napis,int ile=5)
{
 for(int i=0;i<ile;i++)
 cout<<napis<<endl;
}

int main()
{
 NapiszTekst("Witaj",2);
 NapiszTekst("Hello");
 NapiszTekst("Czesc",1);
 return 0;
}

Przeciążanie funkcji

W języku C++ możemy tworzyć funkcje o takich samych nazwach, ale
muszą się one w takim przypadku różnić typem parametrów lub ich liczbą.
Dopuszczalna jest sytuacja, w której funkcje mają taki sam typ parametrów
ale w innej kolejności. Przykłady:

float dodaj()
float dodaj(int i)
float dodaj(float a, double b)
float dodaj(double a, float b)

Podczas wywołania funkcji kompilator wybierze jedną z nich na
podstawie liczby i typu argumentu(ów).

W przypadku przeciążania nazw funkcji kompilator nie bierze pod uwagę
zwracanego typu. Poniższe dwie funkcje są nieprawidłowe, ponieważ mają
taki sam typ parametru:

int dodaj(float i)
float dodaj(float i)

Sufiksy danych

Sufiksy danych to dodatkowe litery dopisane na końcu literałów
liczbowych, które określają typ danych, jaki ma mieć wartość zapisana w
kodzie. Dzięki nim możesz jednoznacznie wskazać, czy liczba ma być typu
int, long, float, double itd. Jeśli chcemy poinformować kompilator, że dana
liczba jest typu float to możemy dodać po liczbie sufix "f" np.:

dodaj(2.4,3f) lub dodaj(2.4f,3.0)

Domyślnie liczba z kropką jest typu double, bez kropki – int.

Przykładowe sufiksy dla liczb całkowitych:
U,u – unsigned int np. 10u
L,l – long int np. 20l
LL,ll – long long int np. 23ll
ul – unsigned long int np. 51ul
ull – unsigned long long int np. 47ull

Przykładowe sufiksy dla liczb zmienoprzecinkowych:

f – float np. 3.14f
L,l – long double np. 2.71L

Przypomnienie
(Zmienne lokalne i globalne)

W funkcjach możemy zadeklarować nowe zmienne, będą one zmiennymi
lokalnymi. Oznacza to, że będą dostępne tylko w tej funkcji, w której zostały
zadeklarowane. Inne funkcje nie mają do nich dostępu. W różnych funkcjach możemy
deklarować zmienne o takich samych nazwach. Zmienna lokalna nie ma przypisanej
żadnej konkretnej wartości początkowej. Zmienne tworzone w obrębie danego bloku (np.
funkcji) są przechowywane w pamięci tylko w momencie wykonywania tego bloku. Po
jego zakończeniu, wszystkie zmienne w nim utworzone zostają z pamięci usunięte.

Zmienne globalne to zmienne zadeklarowane poza jakąkolwiek funkcją, również
poza funkcją main(). Są dostępne dla wszystkich funkcji. Jeśli jakaś funkcja zmieni
wartość zmiennej globalnej, to w innej funkcji taka zmiana jest widoczna. Wynika to z
tego, że zmienne globalne są przechowywane w pamięci już po uruchomieniu programu i
cały czas znajdują się w tym samym miejscu w pamięci (są przechowywane pod tym
samym adresem). Wartość domyślna zmiennej globalnej to zero.

Przesłanianie zmiennych
Zmienne globalne mogą być przesłonięte, jeśli wewnątrz funkcji (lub bloku)

zadeklarujemy inną zmienną o tej samej nazwie (choć niekoniecznie tym samym typie).
Wówczas nazwa tej zmiennej w ciele funkcji odnosi się do zmiennej lokalnej. Zmienna
globalna istnieje, ale jest w zakresie funkcji (bloku) niewidoczna.

Rekurencja (rekursja)

Rekurencja to technika programowania, w której funkcja wywołuje samą
siebie, rozwiązując problem przez podzielenie go na mniejsze, podobne
podproblemy. Każde wywołanie działa niezależnie i czeka na wynik
kolejnego. Rekurencja zawsze musi mieć warunek brzegowy, który
zatrzymuje dalsze wywołania, aby uniknąć nieskończonej pętli.

Przykładem algorytmu, w którym możemy zastosować rekurencję jest
obliczanie silni. Po podaniu przez użytkownika liczby całkowitej wywoływana
jest funkcja obliczająca silnię i wypisywany jest wynik, który ta funkcja
zwróciła.

Innym przykładem algorytmu rekurencyjnego jest algorytm sorotwania
szybkiego (quicksort). Dzieli on tablicę na dwie mniejsze części względem
elementu pivot (element osiowy, podziału), a następnie rekurencyjnie
wywołuje samego siebie do posortowania każdej z tych części, aż do
osiągnięcia warunku brzegowego, kiedy podtablica ma 0 lub 1 element.

Przykład 3
(Rekurencyjne obliczanie silni)

int silnia(int n)
{
 if(n<=1)
 return 1;
 return n*silnia(n-1);
}

int main()
{
 int a;
 cout<<"Podaj liczbę:"<<endl;
 cin>>a;
 cout<<a<<"!="<<silnia(a)<<endl;
 return 0;
}

Przykład 4
(Funkcja do sortowania szybkiego)

void quicksort(int tab[], int lewy, int prawy) {
 int i = lewy;
 int j = prawy;
 int pivot = tab[(lewy + prawy) / 2]; // element osiowy (wartość)

 while (i <= j) {
 while (tab[i] < pivot) i++; // szukaj elementu większego
 while (tab[j] > pivot) j--; // szukaj elementu mniejszego

 if (i <= j) {
 swap(tab[i], tab[j]); // zamiana
 i++;
 j--;
 }
 }

 if (lewy<j) quicksort(tab,lewy,j); // rekurencja dla L. części
 if (i<prawy)) quicksort(tab,i,prawy); // rekurencja dla P. części
}

LABORATORIUM
13 (26.11.2025)

14, 15 (03.12.2025)

Zadanie 18 (Obliczanie potęgi)

Rozbuduj funkcję przedstawioną jako przykład do obliczania potęgi w
taki sposób, żeby pozwalała na obliczenie również ujemnej potęgi
danej liczby. Zadbaj o to, żeby program liczył tylko całkowite potęgi,
nawet przy przypadkowym podaniu potęgi jako liczby
zmiennoprzecinkowej. Niech program napisze jakie działanie wykonał
i jaki jest jego wynik, np.: (-2.1)^3 = -9.261.

Zadanie 19 (Kalkulator z funkcjami)

Przekształć program KALKULATOR (Zadanie 10) tak, aby używał
funkcji do wykonywania działań matematycznych i wyświetlania menu
głównego. Dodaj działanie potęgowania i obliczania silni. Program
powinien działać w pętli aż do wyboru opcji wyjścia.

Zadanie 20 (Sortowanie z funkcjami)

Zmodyfikuj program z Zadania 13 tak, aby używał funkcji.

Zadanie 21 (Analiza danych z histogramem)

a) Napisz program, który wylosuje tablicę n (docelowo duże) liczb
rzeczywistych z podanego zakresu i zapisze je w pliku tekstowym
dane.txt w uporządkowany sposób – jedna po drugiej z
odstępami (np. spacje) lub jedna pod drugą.

b) Napisz program, który odczyta dane liczbowe z pliku dane.txt a
następnie wyznaczy / znajdzie / obliczy i wypisze na ekranie:
liczbę danych zawartych w pliku, najmniejszą i największą liczbę,
średnią, odchylenie standardowe, medianę, dominantę
(koniecznie używaj funkcji).

c) Do programu analizującego dane dopisz funkcję, która wyznaczy
histogram dla danych. Parametrami wejściowymi funkcji będą
tablica danych, jej rozmiar oraz ilość przedziałów histogramu.
Funkcja policzy i wypisze na ekranie granice przedziałów oraz ile
liczb znajduje się w każdym z przedziałów (liczebność). Dane te
zapisze równolegle do pliku tekstowego dane_hist.txt w trzech
kolumnach: lewa granica, prawa granica, liczebność (przedziału).

WYKŁAD
5

(10.12.2025)

WSKAŹNIKI. DYNAMICZNA
ALOKACJA PAMIĘCI

Każda komórka (1 Bajt) w pamięci RAM posiada
swój własny numer (adres) zachowany w formacie
heksadecymalnym (HEX, szesnastkowym) Taki
format zapisu jest krótszy niż binarny i dziesiętny.

Wskaźnik (ang. pointer) – zmienna, która
przechowuje adres w pamięci RAM innej zmiennej
(jej pierwszego Bajta).

Dynamiczna alokacja pamięci (na stercie, ang.
heap) – w każdym momencie, na żądanie, nie tylko
przy uruchomieniu i zakończeniu programu
(statyczna alokacja pamięci, na stosie, ang. stack).

144
adres: 3F7A (16250)

(16250 – 16253)

16250

adres: AF18 (44824)

p

numer

Sterta i stos (ang. heap & stack)

Stos (stack)
● Pamięć dla zmiennych lokalnych i wywołań funkcji.
● Mały, typowo 1–8 MB (w zależności od systemu)
● Bardzo szybki dostęp (LIFO: Last In, First Out), ale ograniczona
wielkość → ryzyko stack overflow !

● Przykład: int a[1000];

Sterta (heap)
● Pamięć dla obiektów dynamicznych (new, std::vector).
● Duża — ograniczona głównie RAM + swap (Linux) lub
pagefile.sys (Windows).

● Wolniejsza alokacja, wymaga zarządzania pamięcią.
● Przykład: auto a = new int[1000000];

Podsumowanie:
● Stos = mały i szybki, automatyczny.
● Sterta = duża i elastyczna, ale wolniejsza.

Format heksadecymalny zapisu liczb

3A5F

0x3A5F – z przedrostkiem 0x (dlaczego?)

3A5Fh – w asemblerze

3 = 3

A = 10

5 = 5

F = 15

3⋅163+10⋅162+5⋅161+15⋅160=14943

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

w binarnym:
11101001111111

int main()
{
 int numer = 144; // zmienna int (4 bajty w RAM)
 int *w; // typ zmiennej, *, nazwa wskaźnika w kodzie
 w = &numer; // adres zmiennej numer przypisujemy na wskaźnik
 cout << w << endl; // wypisz wskaźnik (hex)
 cout << *w <<endl; // wypisz zawartość komórki pamięci
 *w = 20; // przejdź pod adres zapisany w „w” i zapisz tam 20
 return 0;
}

& (ampersand) - operator adresu, umożliwia uzyskanie adresu w pamięci
obiektu stojącego po jego prawej stronie

* - operator dereferencji, umożliwia dostęp do wartości, która znajduje się
pod adresem wskazywanym przez wskaźnik po jego prawej stronie

Użycie wskaźnika pojedynczej zmiennej

!

1) Bezpośredni dostęp do pamięci (adresów) co daje dużą kontrolę

nad działaniem programu.

2) Dynamiczne zarządzanie pamięcią RAM, możliwość tworzenia i

usuwania obiektów (dużych) za pomocą operatorów new i delete.

3) Przekazywania dużych struktur do funkcji (tablic) bez konieczności

ich kopiowania.

4) Zwiększenie szybkości zapisu/odczytu komórek w tablicy (kiedyś,

współcześnie już nie).

5) Możliwość współpracy z urządzeniami zewnętrznymi poprzez

dostęp do odpowiednich adresów komórek pamięci.

Zalety stosowania wskaźników

Wady: Dość nieintuicyjny sposób alokacji tablic wielowymiarowych.

Przekazywanie funkcjom oryginalnych
zmiennych (przez referencję)

float srednia(float &x, float &y, float &z)
//float srednia(float x, float y, float z)
{
 float s = (x + y + z) / 3;
 x += 1000; y += 1000; z += 1000;
 return s;
}

int main()
{
 float a = 1.2, b = 2.3, c = 3.1;
 cout<<”przed funkcja: ”<<a<<”; ”<<b<<”; ”<<c<<endl;
 cout<<”funkcja: ”<<srednia(a,b,c)<<endl;
 cout<<”po funkcji: ”<<a<<”; ”<<b<<”; ”<<c<<endl;
 return 0;
}

Dynamiczna alokacja tablic i wskaźniki

int size=10; // rozmiar tablicy

double stab[size]; // alokacja statyczna

double *dtab; // deklaracja wskaźnika o nazwie dtab
dtab = new double[size]; // dynamiczna alokacja tablicy
// lub:
double *dtab = new double[size];

delete [] dtab; // zwolnienie pamięci (zawsze)

14.1 24.5 1.2 36.01 4.51 11.1

0 1 2 3 4 5

16250 16258 16266 16274 16282 16290

int size = 10; // rozmiar tablicy
// deklaracja wskaźnika i dynamiczna alokacja tablicy:
int *tab = new int[size];
for(int i=0; i<size; i++)
{
 // wypisz adres komórki i jej zawartość:

 cout << tab << ” ” << *tab << endl;
 tab++; // inkrementacja wskaźnika
}
delete [] tab; // zwolnienie pamięci

Znajdź błąd

14 24 13 36 45 11

0 1 2 3 4 5

16250 16254 16258 16262 16266 16270

Pętla po wskaźniku

int size=10;
int *tab = new int[size];
int *p = tab; // pomocniczy wskaźnik do iteracji
for(int i=0; i<size; i++)
{
 cout << p << ” ”<< *p << endl;
 p++; // inkrementacja wskaźnika pomocniczego (4 int, 8 double)
}

p = tab; // jeżeli konieczne ustawiamy z powrotem na początek
delete [] tab; // zwalniamy pamięć

Pętla po wskaźniku

Funkcje pracują na oryginalnych tablicach

float srednia(float tab[5])

float srednia(float tab[], int n)

float srednia(float tab, int n)

float srednia(float *tab, int n)

int *p;

p = &tab[0] ↔ p = tab
// nazwa tablicy alokowanej statycznie jest adresem jej zerowego elementu
// adresem stałym, nie można zrobić tab++

Który nagłówek jest poprawny w kontekście przekazania
tablicy do funkcji liczącej średnią?

Alokacja tablic wielowymiarowych (N)

1) Dynamiczna tablica ND jako N-krotny wskaźnik (new w N pętlach)
– skomplikowane zarządzanie i brak ciągłości pamięci

2) Tablica dynamiczna jako wskaźnik do tablicy (N-1)D wskaźników
– intuicyjne w trybie auto, ale wolne, brak ciągłości pamięci

3) Tablica ND jako jednowymiarowy blok pamięci – dość proste,
szybkie, zachowana ciągłość pamięci, najlepsze pod cache CPU

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays/

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays/

Dynamiczna alokacja tablicy 3D
(jako jednowymiarowy blok pamięci)

int X = 4, Y = 5, Z = 6; // deklaracja
int *tab = new int[X * Y * Z];

int index = i*(Y*Z) + j*Z + k; // indeksowanie
tab[index] = 123;

delete[] tab; // zwolnienie pamięci

LABORATORIUM
16 (10.12.2025)

17, 18 (17.12.2025)

Zadanie 22
a) Napisz program, w którym sprawdzisz w praktyce jakich
rozmiarów tablicę (w megabajtach) jesteś w stanie
zadeklarować statycznie. Chodzi o oszacowanie wielkości
stosu, a nie precyzyjne określenie rozmiaru tablicy z
dokładnością do Bajta.

b) Napisz prosty program demonstrujący, że funkcje zawsze
pracują na oryginalnych tablicach zarówno w przypadku
alokacji statycznej jak i dynamicznej.

Zadanie 23 (Szybkość zapisu / odczytu)

Znając rozmiar dostępnej pamięci RAM zaalokuj dynamicznie
3 duże tablice liczb typu double.

1) Zmierz i porównaj czas zerowania tablicy (wypełnianie
zerami) z zastosowaniem wskaźnika oraz indeksów.

2) Napisz funkcję losującą liczbę rzeczywistą (z dowolnego
zakresu). Zmierz i porównaj czas wypełniania tablicy liczbami
losowymi z zastosowaniem wskaźnika oraz indeksów.

3) Wykonaj jakieś działanie na odpowiednich elementach
dwóch tablic, wynik zapisz w odpowiednim miejscu tablicy
trzeciej. Ponownie zmierz i porównaj czas tej operacji
wykorzystując indeksy i wskaźniki.

4) Sprawdź działanie programu i czasy operacji stosując
standardowe poziomy optymalizacji (-O0, -O1, -O2, -O3, -Os,
-Ofast).

LABORATORIUM
19, 20 (14.01.2026)

WYKŁAD
6

(21.01.2026)

Struktura to złożony typ danych grupujący logicznie powiązane ze sobą dane
różnego typu w jednym obszarze pamięci. Składowe struktury – pola mają swoje
unikatowe nazwy. Struktury pozwalają w przejrzysty sposób opisywać złożone
obiekty. Przykładem struktury może być informacja o książce, której pola będą
zawierały: imię i nazwisko autora (łańcuchy tekstowe), tytuł (łańcuch tekstowy), rok
wydania (liczba całkowita), nazwa wydawnictwa (łancuch tekstowy), numer ISBN
(liczba całkowita lub łańcuch tekstowy) itp.

Budowa struktury:

Definicja struktury musi kończyć się średnikiem.

Przykładowa struktura może wyglądać następująco:

11.06.2025

ZŁOŻONE TYPY DANYCH
(2) STRUKTURA

Tworzenie obiektu struktury

lub

(podobnie jak definicja zmiennych)

Dostęp do składowych struktury

nazwa_typu_strukturalnego.nazwa_składowej

Inicjowanie obiektów

w trakcie definicji struktury

lub po jej zdefiniowaniu:

(kolejność, przecinki, znak =)

Tablica struktur

Tablica struktur umożliwia przechowywanie większej liczby obiektów danej
struktury. Tablicę tworzymy podając jako jej typ nazwę struktury np.:

Osoba tab[10];

Powyższa tablica będzie przechowywała dane 10 osób. Możemy również utworzyć
tablicę w sposób dynamiczny:

Osoba *tab2=new Osoba[10];

Korzystanie z takiej tablicy polega na podaniu jej nazwy, indeksu elementu w
nawiasie kwadratowym, kropki i nazwy składowej:

tab[0].imie=”Adam”;

Przykład pokazujący jak wypełnić danymi całą tablicę:

Struktury – operator przypisania

Przypisanie struktur realizujemy za pomocą operatora przypisania:

Osoba Kowalski1 {"Jan","Kowalski",19},Kowalski2;
Kowalski2=Kowalski1;

W sytuacji, gdy wewnątrz struktury znajdują się wskaźniki, taka operacja
przypisania jest dość niebezpieczna. Kompilator operację przypisania wykonuje
przypisując wartości poszczególnych składowych jednej struktury do drugiej. Jeśli
w strukturze występuje wskaźnik, to po takiej operacji wskaźniki w obu obiektach
będą przechowywały takie same adresy. Tym samym po takiej operacji nie
będziemy mieli dwóch w pełni niezależnych obiektów.

Obiekty w strukturze

Tworząc strukturę, jej składowe mogą być
obiektami innych struktur. Liczba takich
zagnieżdżeń nie jest w żaden sposób
ograniczona. Taka sytuacja występuje w
przykładzie obok →

Po utworzeniu obiektu chcąc dostać się do
składowych struktury wewnętrznej musimy dwa
razy skorzystać z operatora kropki →

W sytuacji gdy obiekt struktury jest składową innej struktury inicjowanie takiego
obiektu danymi, wymaga podawania wartości w nawiasach klamrowych wewnątrz
innych nawiasów klamrowych:

struct DataUrodzenia {

 int r;
 int m;
 int d;
};
struct Student {
 string nazwisko;
 DataUrodzenia dataUr;
};
Student kowalski={”Kowalski”,{2000,10,10}};

Jeśli podczas inicjowania obiektu w nawiasach klamrowych nie podamy żadnych
wartości, to wszystkie składowe takiego obiektu będą wypełnione zerami.

Instrukcja:

Student nobody={};

Jest równoważna z instrukcjami:

nobody.nazwisko=””;
nobody.dataUr.r=0;
nobody.dataUr.m=0;
nobody.dataUr.d=0;

Wskaźnik na strukturę

Obiekty ze struktury mogą być tworzone z wykorzystaniem operatora new. W takim
przypadku dostęp do składowych obiektu jest realizowany za pomocą operatora
strzałki składającej się z dwóch znaków: ->

Przykład tworzenia tablicy obiektów w sposób dynamiczny:

Lista jednokierunkowa

Tablice doskonale nadają się do przechowywania np. obiektów utworzonych ze
struktury. Niestety tablica ma kilka wad. Dołożenie lub usunięcie elementu z jej
środka jest bardzo wolną operacją, ponieważ zazwyczaj musimy przemieścić przy
tym wiele innych elementów. Rozwiązaniem problemu jest w takiej sytuacji lista.
Listę można opisać jako uszeregowany zbiór elementów. Każdy element zawiera
dane oraz wskazuje na swojego następcę. Wskazuje, czyli przechowuje adres
następnego elementu. Do tworzenia listy świetnie nadają się struktury. Poniżej
znajduje się przykład struktury, która zostanie wykorzystana do utworzenia listy:

Wewnątrz struktury znajduje się wskaźnik na tę samą
strukturę. Zadaniem tego wskaźnika będzie
przechowywanie adresu kolejnej osoby. Jeśli to będzie
ostatnia osoba to wskaźnik ten będzie równy nullptr.

Do sprawnego posługiwania się listą
potrzebujemy wskaźnika, który będzie
przechowywał adres pierwszego obiektu
naszej listy. Dodawanie nowego obiektu
do listy polega na przydzieleniu pamięci
na obiekt i zapisaniu jego adresu do
wskaźnika next ostatniego obiektu listy.
Wygląd listy trzech obiektów pokazuje
schemat:

Usunięcie obiektu z listy
wymaga zmiany wskaźnika
next oraz usunięcia obiektu z
pamięci. Jeśli usuwamy drugi
obiekt, to najpierw musimy
wykonać operację po której
pierwszy obiekt będzie
przechowywał adres trzeciego
obiektu. Dopiero wtedy
możemy usunąć z pamięci
obiekt który był jako drugi.
Poniżej pokazano przykład
tworzenia listy oraz dodawania
obiektów do listy:

Zadanie 25 (prosta baza danych)

Napisz program do utworzenia i zarządzania prostą
bazą danych tekstowych i numerycznych (np. książki,
przedmioty kolekcjonerskie) z wykorzystaniem listy
jednokierunkowej. Program powinien posiadać opcje
wypisywania rekordów, dodawania rekordów do bazy,
usuwania niechcianych rekordów oraz modyfikowania
istniejących rekordów.

*Dodatkowym atutem będzie odczytywanie bazy z
pliku tekstowego i zapisywanie do pliku nowej,
zmodyfikowanej bazy danych.

15. Złożone typy danych (3)
(unia i typ wyliczeniowy) 18.06.2025

Ćwiczenia programistyczne (3)

Zadanie 26 (analiza tekstu)

Napisz program, który wczyta cały tekst z pliku
tekstowego, a następnie wykona analizę ilości znaków.
Program wypisze ilość wszystkich znaków w tekście a
następnie ilość konkretnych znaków, ale tylko i wyłącznie
tych, które w tekście wystąpiły przynajmniej raz.

Ćwiczenia programistyczne (4)

Zadanie 27 (problem komiwojażera)

Napisz program, który rozwiąże problem komiwojażera.
Zdefiniuj w pliku tekstowym (lub wylosuj) współrzędne
miejsc dostarczenia przesyłek w wybranym kartezjańskim
układzie współrzędnych. Program powinien znaleźć
najkrótszą drogę pomiędzy punktami zaczynając od
pierwszego z nich.

TEST ZALICZENIOWY
??.??.2025

Powodzenia !!!
https://pl.freepik.com

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81
	Slajd 82
	Slajd 83
	Slajd 84
	Slajd 85
	Slajd 86
	Slajd 87
	Slajd 88
	Slajd 89
	Slajd 90
	Slajd 91
	Slajd 92
	Slajd 93
	Slajd 94
	Slajd 95
	Slajd 96
	Slajd 97
	Slajd 98
	Slajd 99
	Slajd 100
	Slajd 101
	Slajd 102
	Slajd 103
	Slajd 104
	Slajd 105
	Slajd 106
	Slajd 107
	Slajd 108
	Slajd 109
	Slajd 110
	Slajd 111
	Slajd 112
	Slajd 113
	Slajd 114
	Slajd 115
	Slajd 116
	Slajd 117
	Slajd 118
	Slajd 119
	Slajd 120
	Slajd 121
	Slajd 122
	Slajd 123
	Slajd 124

