

enough for Newtonian physics to apply, then we have

$$M = \frac{v^2 r}{G} = \frac{4\pi^2 r^3}{GP_{\text{orb}}^2} = \frac{v^3 P_{\text{orb}}}{2\pi G},$$

where r and $P_{\rm orb}$ are the radius and period of the orbit and v is the velocity of the particle. By measuring any two of v, r and $P_{\rm orb}$, we may estimate M. Equation (2) is modified in a straightforward way when the orbit is non-circular. For instance, the relation $M=4\pi^2r^3/GP_{\rm orb}^2$ continues to be valid, provided r is taken to be the semi-major axis of the elliptical orbit of the test particle.

3.1. X-ray Binaries

In the case of a BH XRB, it is relatively easy to measure the period P_{orb} of the orbit and the maximum line-of-sight Doppler velocity $K_c = v \sin i$ of the companion star to the BH, where i is the inclination angle of the binary orbit. From these, one can calculate the "mass function" f(M):

$$f(M) \equiv \frac{K_c^3 P_{\text{orb}}}{2\pi G} = \frac{M \sin^3 i}{(1 + M_c/M)^2},$$
 (3)

where M is the mass of the BH candidate and M_c is the mass of the companion star. Comparing equation (3) with equation (2) we see two differences. First, because we measure only the line-of-sight component of the orbital velocity, the mass function differs from the

PKA

(2)

enough for Newtonian physics to apply, then we have/

$$M = \frac{v^2 r}{G} = \frac{4\pi^2 r^3}{GP_{\rm orb}^2} \neq \frac{v^3 P_{\rm orb}}{2\pi G},$$
 (2)

where r and P_{orb} are the radius and period of the orbit and v is the velocity of the particle. By measuring any two of v, r and P_{orb} , we may estimate M. Equation (2) is modified in a straightforward way when the orbit is non-circular. For instance, the relation $M = 4\pi^2 r^3/GP_{\text{orb}}^2$ continues to be valid, provided r is taken to be the semi-major axis of the elliptical orbit of the test particle.

Marek Nikol...

3.1. X-ray Binaries

In the case of a BH XRB, it is relatively easy to measure the period P_{orb} of the orbit and the maximum line-of-sight Doppler velocity $K_c = v \sin i$ of the companion star to the BH, where i is the inclination angle of the binary orbit. From these, one can calculate the "mass function" f(M):

 $K_c^3 P_{\rm orb}$

 $M \sin^3 i$

FWRcos

 $\int x^2 a$

