Zajęcia nr 4 – cyferki, cyferki, komu komu, bo idę do domu

Kto nie był niech żałuje. Prawie zakończyliśmy budowę naszego pojazdu podróżującego w czasie 😉 Pracowaliśmy nad konsoletą do sterowania (programowania daty podróży)

A dokładniej pracowaliśmy nad jednym z elementów:

878-00

A jeszcze dokładniej: nad pojedynczą cyferką!

7 segment display (SSD) – przeczytaj Wikipedię (ale nie całą).


Wszyscy uczestnicy Talenów pracowali wytrwale i już po chwili każdyemu udało się tak sterować LEDami 7-mio segmentowego wyświetlacza, by pokazywał jedynkę, dwójkę i trójkę. Jeden z uczestników kursu okazał się bardzo sprytny i bardzo szybko miał zaprogramowane wszystkie 10 cyfr (gratuluję Jakubowi M. (VIII LO) – nagroda na koniec kursu).

W celu sterowania 7-mio segmentowym wyświetlaczem szlifowaliśmy techniki programowania strukturalnego:

  • tworzyliśmy własne funkcje, w tym funkcje z argumentami
  • wykorzystywaliśmy tablice (do przechowywania numerów pinów z Arduino)
  • wykorzystaliśmy tablice dwuwymiarowe – tzw. tablice tablic, czyli elementami tablicy była… tablica! Okazało się to bardzo użyteczne (z odpowiednim programowaniem funkcji)
  • no i poznaliśmy hardware, czyli 7 segment display ze wspólną anodą (CA – common anode – w naszym przypadku). Musieliśmy troszkę zmienić nasze myślenie – przywykliśmy do schematu: 1=włączone, 0=wyłączone. A tutaj odwrotnie. Włączając napięcie 5V na pinie Arduino powodujemy zgaszenie segmentu, z kolei ustawiając napięcie na 0V włączamy segment! Tak – specjalnie dałem Wam taki właśnie sprzęt, by troszkę wysilić szare komórki!

Niestety – programowanie pojedynczej cyferki wymagało wykorzystania 8 pinów cyfrowych z Arduino. To dość dużo… 2 Takie cyferki wymagają już 16 pinów, a nasze UNO ma ich 14 (tylko? aż?). OK, można ustawić piny analogowe jako cyfrowe, tym samy będziemy mieć ich dodatkowo 6 sztuk – czyli oprogramujemy 2 cyferki. Ale co z naszą konsolą do podróży w czasie?? Pojazd już mamy, tylko ta konsola nas blokuje…

Rejestr przesuwny 74HC595 (ang. shift register)

Jako rozwiązanie powyższego problemu poznaliśmy rejestr przesuwny 74HC595. Cena tego cuda na czarnym rynku to około 1 zł w detalu, a umożliwia ono sterowanie 8 wyjściami (czyli np. jedną cyferką) za pomocą tylko 3 pinów cyfrowych z Arduino! Co więcej, łącząc ze sobą dwa takie układy (za łączną kwotę 2 zł) możemy mieć już oprogramowane 2 cyferki, ciągle wykorzystując tylko 3 piny cyfrowe z Arduino. Układy można łączyć w kolejne szeregi aż do 8 sztuk.

Przy tej okazji poznaliśmy:

  • orientację modułu w kasiecie DIP (pamiętacie tą kropeczkę? wcięcie?)
  • numerację pinów na module (odwrotnie do ruchu wskazówek zegara, gdy patrzę mu w twarz…)
  • nazewnictwo niektórych pinów (GND, Vcc, Qa, Qb…)

No i na koniec okazało się, że aż 3 uczniów zrobiło błąd przepisując mój cudowny kod z tablicy, tym samym rejestr przesuwny nie działał. Trudno powiedzieć o co chodzi w tej plątaninie przewodów,

DSC_0322

ale od kłopotów uratował nas Sylwester K. (ZSH-E) – bezbłędnie przepisując program, uruchamiając i ciesząc oczy działającym układem. Był nawet na tyle szczodry, że po chwili rozsyłał swój (mój?) program kolegom, którzy tylko czerwienieli widząc, że już u nich wszystko gra 😉

Praca domowa – tym razem – dobrowolna!

Proszę zmusić Arduino by odliczało od 9 do 0 z wykorzystaniem rejestru przesuwnego. W tym celu zalogujcie się do 123d.circuits.io i tam przygotujcie hardware (poszukajcie wyświetlacza oraz rejestru – czekają tam na Was, przy czym najpierw sprawdźcie wirtualną bateryjką, czy wyświetlacz jest ze wspólną anodą, czy katodą), a software macie już prawie gotowy. Kto się na to pokusi? Nagroda czeka…

P.S.

Lubicie dobranocki z dreszczykiem? Jeśli tak, i nie lękacie się języka angielskiego to zapraszam do lektury

 

Przygotowania cdn…

  • Pan Paweł atakuje temat wyświetlaczy, ciekawe, czy mu się uda zrealizować grę 😉
  • Pani Noemi zaprzyjaźnia się z bluetoothem i sterownikiem silników…
  • Pan Kamil niedługo stanie się mistrzem Processingu…
  • Pana Marcina nie było 🙁 ciekawe, jak jego serwa?
  • Pan Adrian jest już na ostatniej prostej – pojazd jeździ (prosto!), reaguje na zderzenia, więc… dostał nowe zderzaki do zamontowania + pomysł na modyfikację softu do swojego bolida 😉

Się dzieje 😉

P.S.

Jak na razie zapisało się do nas:

  • na godz. 10:00 – III LO B-stok (~15 osób),  gimnazjum nr I Grajewo (~25 osób)
  • na 11:00 – II LO Grajewo (~16 osób)
  • jak na razie zapisów brak
  • na 13:00 – II LO B-stok (~30 osób !!!)

 

RemoteXY – bardzo fajna obsługa Arduina via smartfon (+Bluetooth)

Dziś tematem naszego spotkania był moduł Bluetooth HC05 – ale nie sam moduł, tylko sposób jego programowania z poziomu Androida. W markecie jest sporo darmowego oprogramowania, ale często nie spełnia naszych oczekiwań – ze względu na brak możliwości pełnej konfiguracji, lub nieatrakcyjność interfejsu. Cóż – nie ma co narzekać jak za darmowe apki, ale… dziś – dzięki uprzejmości Pani Noemi – poznaliśmy płatną apkę RemoteXY do zarządzania Arduinem via moduł Bluetooth (tak, to właśnie Pani Noemi poprowadziła dzisiejsze spotkanie, jako osoba z doświadczeniem z tym programem).

Mowa o RemoteXY, które po zakupie na telefon (tablet, etc) trzeba doinstalować na kompa, gdzie mamy Arduino IDE. Potem wszystko działa według schematu:

i trzeba przyznać, że faktycznie – jest to

  1. proste
  2. intuicyjne
  3. ładne graficznie!

Cóż więcej dodać? Chyba po takiej reklamie już nic nie trzeba 😉

DSC_1104

A tutaj już konkretny przykład Pani Noemi – sterowanie silniczkami oraz LEDami przez smartfon. Dwa przyciski włączają/wyłączają diody, joystik w prawej części ekranu to panel sterowania silniczkami (zmieniamy szybkość i kierunki ruchu oby silników). Na biurku hardware: HC05 oraz Arduino + MotorShiel AdaFruit.

Edit:

stety/niestety znalazłem słaby punkt tej apki. Po jej zakupie tylko my możemy korzystać z przygotowanych layoutów. Nie możemy oddać komuś innemu, nieposiadającemu pełnej wersji naszej zabawki (np. robocika) aby sterował nim z poziomu swego smartfona. Ten ktoś musi posiadać RemoteXY. Cóż.

Arduino: Przerwania + TCRT5000 do wykrywania szybkości obrotowej koła (04-05-2016)

Warto poczytać: https://www.arduino.cc/en/Reference/AttachInterrupt

oraz zapamiętać:

Płytka Piny cyfrowe pod które możemy podpiąć przerwania
Uno, Nano, Mini, other 328-based 2, 3
Mega, Mega2560, MegaADK 2, 3, 18, 19, 20, 21
Micro, Leonardo, other 32u4-based 0, 1, 2, 3, 7
Zero wszystkie, za wyjątkiem 4
MKR1000 Rev.1 0 0, 1, 4, 5, 6, 7, 8, 9, A1, A2
Due wszystkie

oraz ,,zdarzenia”, podczas których uaktywni się funkcja przypisana pod dane przerwanie: LOW, CHANGE, RISING, FALLING (HIGH – tylko płytka Due). Krótko: funkcja „podpięta” do przerwania wywoła się wówczas, gdy na tym pinie (tym = zdefiniowanym podczas attachInterrupt) zajdzie konkretne „zdarzenie”, np. LOW. Oczywiście taka funkcja ma być szybka: ustalenie flagi, sterowanie napięciem na pinach – digitalWrite – ale nie delay(ileś-tam).

Przykład: Arduino + przycisk do błyskania diodą #13. Hardware: przycisk (mikroswicz podłączamy do GND a drugą nóżką do pinu #2 w Arduino).

#define PIN 2
bool stan=false;

void setup() {
pinMode(13, OUTPUT);
digitalWrite(13, 0);

pinMode(PIN, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(PIN), blysk, LOW);
}

void loop() {
delay(10000);
}

void blysk(){
stan=!stan;
digitalWrite(13, stan); 
}

Gdy nic nie wiemy o przerwaniach, to przyglądając się funkcji loop() można by powiedzieć, że program NIC NIE ROBI! Tylko czeka 10s, a potem znowu czeka 10s, i tak w kółko… Więc skąd się bierze błyskanie diody #13 w momencie klikania przycisku? Otóż wywołanie delay() zatrzymuje działanie programu, ale przerwania ciągle działają. Skoro więc „podpięliśmy” naszą funkcję (o nazwie blysk()) do przerwania, to właśnie ona się wywoła (gdy stan pinu #2 zmieni się na LOW – to wszystko zostało powiedziane w funkcji setup()). Właśnie taki mechanizm wykorzystałem do wykrycia kolizji przez zderzak naszego pojazdu – pisałem o tym w poprzednim poście. UWAGA: powyższy program działa dość dynamicznie, „nerwowo” reagując na wciśnięcie przycisku – oczywiście jest to zjawisko drgania styków (ang. bouncing), o czym mówiliśmy na naszych poprzednich spotkaniach (tutaj, dla przejrzystości kodu nic z tym nie robię, brak jest debouncing-u).

Dodatkowo: zliczanie obrotów koła.

mDSC_1100

podłączyliśmy czujnik optyczny odbiciowy TCRT5000 do obudowy silniczka, a następnie wewnątrz koła umieściliśmy białą kartkę z czarną krechą. Czytamy wartości rejestrowane przez czujnik ale nie na Serial monitorze, ale GRAFICZNIE, za pomocą Processinga.

silniczek

Widzimy wyraźnie moment, gdy czujka mija czarną kreskę. Widać też, że piki zdecydowanie różnią się od „tła”, choć często mają różną wartość w maksimum. Łatwo wykombinować prosty algorytm (czy skuteczny? niedługo się o tym przekonamy) liczący szybkość obrotową koła:

  1.  zapisujemy t1, czyli czas pojawienia się maksimum (funkcja millis())
  2. czekamy na kolejne maksimum, gdy je złapiemy to
  3. zapisujemy t2, czyli czas pojawienia się kolejnego maksimum- wówczas różnica czasów t2 i t1 daje właśnie czas jednego, pełnego obrotu.

Pewnie „diabeł tkwi w szczegółach” ale powinno działać. Jak powiedziałem na zajęciach – więcej kresek (ale z umiarem! powiedzmy 4 na początek) powinny zwiększyć rozdzielczość zliczania liczby obrotów koła.

mDSC_1099

Będziemy to programować na kolejnych zajęciach…