line follower, podstawy

  • podstawy (PWM, serwo silnik)
  • 3x czujka TCRT5000: Pan Bartek zlutował sobie moduł i zbudował PIERWSZEGO line followera (GRATULUJĘ!):
    • powyżej zastosowano nowatorskie rozwiązanie: czujki TCRT działają CYFROWO, ale zapamiętywana jest HISTORIA pomiarów (cyklicznie, 10 odczytów) a DECYZJA o zwrocie robocika podejmowana jest na podstawie UŚREDNIENIA historii – ciekawe rozwiązanie! Wszystko jest raczej tymczasowe, bo jest zamiar przeprogramowania układu – odczytywanie czujek analogowo, co poprawi dynamikę robota. Problemy techniczne – toporne koła i silniki – rozwiązujemy przez wymianę podzespołów na inne (zestaw silniczków i kół Pololu – niebawem w akcji)

(c) K.G. 2018

Pojazd (autonomiczny), refleks (LEDy + przyciski) oraz line follower

Ciągle dwa/trzy niezależne projekty. Wygląda na to, że będą jednak trzy, bo Pan Bartek „atakuje” temat line followera (świetnie!)

1) zespół od pojazdu po sukcesie sterowania pojazdem przez człowieka (bluetooth) poznawał temat czujki odległości HC-SR04. Zamontowali już nawet „trzymak” w pojeździe – bez użycia wkrętaki! zuchy! 😉 Tak, tak – to „oklepany” układ, ale każdy od czegoś zaczyna – prawda? Trzymam więc kciuki za poprawne oprogramowanie go w pojeździe i zrobienie autonomicznego robota (poruszającego się bez ingerencji człowieka, w tym przypadku: wykrywającego kolizje i zmieniającego kierunek ruchu).

2) „refleks” przeszedł w stan rozbudowany i teraz składa się z 3 losowo zapalanych LEDów, i łapaniu reakcji przez 3 przyciski. Układ:

oraz program (+dużo komentarzy):

//piny z podlaczonymi przyciskami
int btn[]={2,4,6};
//piny z podlaczonymi ledami
int led[]={3,5,7};

void setup() {
  Serial.begin(9600);
  for (int i=0; i<3; i++){
    pinMode(btn[i],INPUT_PULLUP);
    pinMode(led[i], OUTPUT);
  }
}

unsigned int i;
unsigned int cr,tstart,tstop;
byte bt1, bt2, bt3, LOS;

void loop() {
  //"dysko-mode" informujace o poczatku rozgrywki
  for(i=0;i<3;i++){
        digitalWrite(led[0], HIGH);
        delay(100);
        digitalWrite(led[1], HIGH);
        digitalWrite(led[0], LOW);
        delay(100);
        digitalWrite(led[2], HIGH);
        digitalWrite(led[1], LOW);
        delay(100);
        digitalWrite(led[2], LOW);
        delay(100);
    }//"dysko-mode"
      
   //(pseudo)losowe czekanie: od 1s do 5s
   delay(random(1000,5000));

   //wybor LEDa do zaswiecenia: 1,2 lub 3
   LOS=random(1,4);
   
   //wersja tylko do testow: wypisywanie na ekran losowania
   Serial.print("LOS=");
   Serial.println(LOS);

   //wlaczenie wylosowanego LEDa     
   //dzieki zapisaniu numerow pin-ow do tablicy jest to teraz bardzo proste!
   digitalWrite(led[LOS-1], HIGH);

   //rozpoczecie mierzenia czasu
   tstart = millis();
       
   //czekanie na rekacje uzytkownika - wcisniecie jednego z trzech pyrzycsikow
   //zapamietujemy w zmiennych, ktore przyciski sa wcisniete
   do{                
       bt1 = digitalRead(btn[0]);
       bt2 = digitalRead(btn[1]);
       bt3 = digitalRead(btn[2]);                
   }while(bt1+bt2+bt3==0); //petla wykonuje sie tak dlugo, az przynajmniej jeden z przyciskow zostanie wcisniety                          

   //zatrzymanie "stopera" skoro cos zostalo wcisniete
   tstop = millis();
   digitalWrite(led[LOS-1], LOW);     

   //okreslenie poprawnosci wcisniecia przycisku:
   //zakladamy, ze zle wcisniety przycisk (tak wygodniej)
   bool ok=false;   //czy wygralem? 

   //sprawdzenie, czy moze jednak zostal wcisniety odpowieni przycisk
   switch(LOS){
      case 1: if ((bt1==1)&&(bt2==0)&&(bt3==0)) ok=true;break;
      case 2: if ((bt2==1)&&(bt1==0)&&(bt3==0)) ok=true;break;
      case 3: if ((bt3==1)&&(bt1==0)&&(bt2==0)) ok=true;break;
    }//swicth

    //jesli wygrales, to stosowny komunikat
    if (ok){    
      cr = tstop-tstart; //cr = "czas rekacji"
      Serial.print("brako! gratulacje! ");    
      Serial.print("czas reakcji:");
      Serial.println(cr);
    }//ok==true
    else{    
      Serial.println("pudło! nie ten przycisk!");    
    }     
    delay(1000);
}//loop
         
        



Można jeszcze popracować nad tym kodem – można dodać kolejny (inny) „dysko-mode” informujące, że się poprawnie wybrało przycisk, albo zaświecić wszystkimi LED-ami, gdy użytkownik „spudłował”. W przyszłości dodamy do układu wyświetlacz LCD aby tam pojawił się stosowny komunikat, a nie na ekranie podłączonego komputera.

3) na bazie TSOP5000 (kiedyś już ją poznawaliśmy) powstanie czujnik do pojazdu typu line follower – praca się właśnie rozpoczyna. Działa już (podwójny) układ czujników, więc teraz rozpoczął się drugi etap: układ 3/4/5? czujek na własnoręcznej płytce prototypowej + pojazd na sterowniku L298.

Dlaczego własnoręcznie robiona czujka, a nie jedna z „kupnych”, jak te ze zdjęć poniżej?

Odpowiedź jest prosta: bo to fajniejsze i mamy więcej zabawy podczas pracy, a o to właśnie chodzi!

 

KG, 2018

Pojazd (Bluetooth) + podstawy (3xLEDy + 3x przycisk)

Rozwija się projekt POJAZDU, a jednocześnie nauczane są podstawy Arduino (i programowania)…

  1. POJAZD
    1. Sterownik Monster vnh2p30 okazał się uszkodzony! Trudno to było wyczuć, bo z jednej strony działał poprawnie kręcąc silniczkiem w jedną stronę, natomiast w stronę przeciwną – albo wcale, albo baaaardzo powoli. Dlatego odsyłamy sterowniki do sklepu i wracamy do L298 i programujemy sterowanie przez Bluetooth. Pamiętamy o tym, aby nie jeździć na maksa bo ten sterownik przeznaczony jest tylko do pracy z prądami <1A. Na kolejnych zajęciach wrócimy do Monstera – bo mamy ich kilka sztuk a nie wszystkie są niesprawne.

  1. Sterowanie Bluetooth przez aplikację  Android RC działa! gratulacje.
  2. Podstawy Arduino/C/C++ pracujemy….

KG, 2018

Pojazd (pierwsze uruchomienie) + podstawy (LEDy + przycisk)

Rozwija się projekt POJAZDU, a jednocześnie nauczane są podstawy Arduino (i programowania)…

  1. POJAZD
    1. praca nad sterowaniem pojazdem: wykorzystujemy sterownik Monster vnh2p30 o bardzo dobrych parametrach (maksymalny prąd nawet 30A! zasilanie 6-18V) i świetnej cenie (~25 zł). Sterowanie podobne jak w przypadku L298 (za pomocą dwóch sygnałów) – konieczne jest podłączenie sygnału PWM (lub innego pinu z Arduino i włączenie go na stałe na HIGH, czyli PWM=100%). Fajna stronka opisująca co i jak podłączyć – polecam.
    2. Można kupić PODWÓJNY sterownik, ale cena (o dziwo) nie jest już aż tak atrakcyjnaZnalezione obrazy dla zapytania monster vnh2p30
  2. PODSTAWY: LEDy + przycisk = REFLEKS. Poznajemy jak odczytać stan przycisku – małe wyzwanie: program REFLEKS: LED zapali się po losowym czasie, naszym zadaniem jest jak najszybsze wciśnięcie przycisku od razu po zaświeceniu LEDa. Mierzymy czas reakcji człowieka.  Ciągle polecam wirtualne Arduino do zabawy w domu!
  3. Poznaliśmy OPTYCZNY czujnik odległości E18-D80NK (5V, zakres 3-80cm, nie dźwiękowy!) – prosty w użyciu, a niedługo do wykorzystania w projekcie Pojazdu.

KG, 2018