komunikacja I2C (LCD na hd44780)

(Wpis ten jest reaktywacją wpisu z 2017 r. Okazało się, że warto podzielić oryginalny wpis na dwie mniejsze części – jedna dotycząca komunikacji I2C właśnie, druga SPI).

Komunikacja I2C

To bardzo popularny interface komunikacyjny, obsługujący za pomocą tylko 2 linii aż 127 urządzeń! tymi pinami są SDA (w Arduino pin A4) oraz SDC (w Arduino pin A5). Oznacza to, że gdy podłączamy coś na I2C „tracimy” piny A4 i A5. Trudno – coś za coś. Zresztą, to nic nowego – podobnie jest z komunikacją UART – Serial.begin(xxx) – „zabiera” nam cyfrowe piny #o (TX) i #1 (RX). Przy czym UART to tylko komunikacja z jednym urządzeniem – a tutaj 2 piny i możliwość obsługi do 127 urządzeń!

HD44780 i LCD 16×2

Jako przykład komunikacji I2C użyliśmy wyświetlacza LCD 16×2 z dodatkowym sterownikiem hd44780. Po co ten sterownik? wszak to bardzo popularny wyświetlacz i można go podłączyć w ten sposób:

Przypatrzmy się uważnie co my tu widzimy – zwracam uwagę na liczbę pinów potrzebnych do obsługi wyświetlacza przez Arduino. Uważne oko uczestnika sdanaszych spotkań zauważy, że potrzeba aż 6 cyfrowych pinów. To sporo! Wszystko jest OK, gdy robimy proste programy, poznajemy moduły (w tym właśnie taki LCD) więc tych 6 pinów nie robi problemu. Ale my mamy już nasz pojazd i wykorzystanych 6 pinów do jego sterowania (a w planach kolejne rozbudowy). Jak więc poradzić sobie z problemem (powoli) kończących się pinów w Arduino UNO? Zakupić Megasa? A może użyć właśnie sterownika na I2C – wówczas potrzeba jedynie 2 pinów!

My skorzystaliśmy z wymienimego sterownika PLUS biblioteki LiquidCrystal_I2C autorstwa Franka de Brabander-a. Sporo jest podobnych bibliotek, więc doinstalowywując ją sobie warto zwrócić uwagę na tą użytą przeze mnie, a nie inną. Na szybko poznaliśmy kilka metod nowego obiektu do obsługi wyświetlacza:

include <Wire.h>   // standardowa biblioteka Arduino
#include <LiquidCrystal_I2C.h> // dolaczenie pobranej biblioteki I2C dla LCD

LiquidCrystal_I2C lcd(0x27, 16, 2);
//LiquidCrystal_I2C lcd(0x3f, 16, 2);


void setup(){
  lcd.init();
  lcd.begin(16,2);   // Inicjalizacja LCD 2x16
  
  lcd.backlight(); // zalaczenie podwietlenia 
  lcd.setCursor(0,0); // Ustawienie kursora w pozycji 0,0 (pierwszy wiersz, pierwsza kolumna)
  lcd.print("pomidor!");
  delay(500);
  lcd.setCursor(0,1); //Ustawienie kursora w pozycji 0,0 (drugi wiersz, pierwsza kolumna)
  lcd.print("LCD 16x2 I2C -- hd44780");

}

int nico=7;
void loop() 
{
   lcd.backlight(); // zalaczenie podswietlenia
   lcd.setCursor(10,1);
   lcd.print(millis()/1000);
   delay(1000);
   lcd.noBacklight(); // wylaczenie podswietlenia
   lcd.setCursor(0,0);
   lcd.print(nico);
   nico=nico*2;
   delay(1000);
}

Warto ją poznać dokładniej, czytając dokumentację.

Adresacja użądzeń I2C 

Skoro do tych samych pinów SDA i SDC można podłączyć do 127 urządzeń, to skąd wiadomo, kto co nadaje? Np. jeśli chcemy użyć dwóch LCD-ków, na jedynym wyświetlać pewne informacje a na innym inne to jak kierować napisy na różne urządzenia?

Ważne jest poznanie adresu naszego użądzenia – w tym celu należy wygooglać świetny programik i2c_scanner i wgrać do Arduino z podłączonym wyświetlaczem (zresztą, nie tylko wyświetlaczem – czymkolwiek na I2C).

A jak zmienić adres w omawianym sterowniku hd44780? Bo gdy kupiny sobie dwa takie i chcemy je wykorzystać razem to będzie to niemożliwe – oba będą mieć fabrycznie te same adresy (albo 0x27 – gdy to moduł PCF8574/PCF8574T lub 0x3f – dla modułów PCF8574A). Jest możliwość zmiany adresu zwierając ze sobą (lutując) piny A012 na spodzie modułu:

Kliknij obrazek by dowiedzieć się co i jak.

(c) K.G. 2017, 2019

 

Ekranik LCD 16×2 oraz komunikacja I2C

Kontynuujemy projekt zabawki mierzącej refleks (także pamięć – „memory”). Potrzebujemy sposobu komunikacji z użytkownikiem (innego niż podłączony komputer PC do Arduino) – wybór padł na ekranik LCD 16×2.

LCD 16×2

Układ ten to szesnaście znaków w dwóch wierszach – stąd nazwa 16×2. Są także inne, obejrzyjcie dla przykładu magazyny botland.com.pl

Schemat podłączenia ładnie opisany jest na oficjalnych stronach Arduino – zapraszam do lektury. Nasze układy po złożeniu wyglądały tak:

Program polega na użyciu wbudowanej bibliotyki LiquidCrystal.h — poniżej program:

//LCD16x2 sterowany przez Arduino

#include <LiquidCrystalC.h> // dolaczenie pobranej biblioteki dla LCD

LiquidCrystal lcd(, 2, 11, 12, 4, 5, 6, 7);

void setup(){
  lcd.begin(16,2);   // Inicjalizacja LCD 2x16
  
  lcd.setCursor(0,0); // Ustawienie kursora w pozycji 0,0 (pierwszy wiersz, pierwsza kolumna)
  lcd.print("pomidor!");
  delay(500);
  lcd.setCursor(0,1); //Ustawienie kursora w pozycji 0,0 (drugi wiersz, pierwsza kolumna)
  lcd.print("LCD 16x2");
}
void loop() {
}

Warte podkreślenia jest tutaj fakt wykorzystania aż 6-ciu cyfrowych pinów do obsługi tego wyświetlacza. To dużo! Nie ma sprawy, gdy tylko „bawimy” się modułem ekraniku, ale gdy już coś budujemy, podłączamy LED-y czy przyciski – to wówczas spotykamy się z deficytem pinów w Arduino UNO. Ale są lepsze sposoby na podłączenie takiego wyświetlacza.

Komunikacja I2C (IIC, TWI)

To bardzo popularny interface komunikacyjny, obsługujący za pomocą tylko 2 linii aż 127 urządzeń! tymi pinami są SDA (w Arduino pin A4) oraz SDC (w Arduino pin A5). Oznacza to, że gdy podłączamy coś na I2C to łączamy to coś dwoma przewodami z Arduino, podłączając do wejść A4 i A5 – jednocześnie „tracimy” te piny (A4 i A5) – nie możemy z nich korzystać. Trudno – coś za coś. Zresztą, to nic nowego – podobnie jest z komunikacją UART – Serial.begin(xxx) – „zabiera” nam cyfrowe piny #o (TX) i #1 (RX). Przy czym UART to tylko komunikacja z jednym urządzeniem – a tutaj 2 piny i możliwość obsługi do 127 urządzeń!

Moduł hd44780 (i2c)

Jako przykład komunikacji I2C użyliśmy wyświetlacza LCD 16×2 z dodatkowym sterownikiem hd44780. Taki sterownik jest tani a bardzo użyteczny. 

Całe podłączenie polega na połączeniu VCC i GND ze steronika do VCC i GND z Arduino, oraz pinów SDA, SDC ze sternika – do SDA i SDC w Arduino. Przy okazji dowiedzieliśmy się, że piny A4 i A5 w Arduino mają swoje „klony” w szeregu pinów cyfrowych, powyżej #13, GDN, ARFE.

Musimy użyć nowej biblioteki do obsługi tego modułu – ja zdecydowałem się na LiquidCrystal_I2C.h autorstwa Franka de Brabandera. Nie jest standardowo zainstalowana więc trzeba ją samodzielnie doinstalować. Przykładowy program:

//LCD16x2 sterowany przez I2C Arduino

include <Wire.h>   // standardowa biblioteka Arduino
#include <LiquidCrystal_I2C.h> // dolaczenie pobranej biblioteki I2C dla LCD

LiquidCrystal_I2C lcd(0x27, 16, 2);
//LiquidCrystal_I2C lcd(0x3f, 16, 2);


void setup(){
  lcd.init();
  lcd.begin(16,2);   // Inicjalizacja LCD 2x16
  
  lcd.backlight(); // zalaczenie podwietlenia 
  lcd.setCursor(0,0); // Ustawienie kursora w pozycji 0,0 (pierwszy wiersz, pierwsza kolumna)
  lcd.print("pomidor!");
  delay(500);
  lcd.setCursor(0,1); //Ustawienie kursora w pozycji 0,0 (drugi wiersz, pierwsza kolumna)
  lcd.print("LCD 16x2 I2C -- hd44780");
}
void loop() {
}

i2cScanner

To bardzo użyteczny program (aż mnie dziw bierze, że nie jest standardowo dodany do Arduino IDE!) więc trzeba go ręcznie zgrać z internetu i uruchomić. Dzięki niemu poznajemy adres swojego urządzenia – bo skoro magistrala i2c obsługuje aż do 127 urządzeń, to jak je rozpoznaje? które urządzenie jest które? a jeśli chcemy mieć 2, 3 lub 4 wyświetlacze LCD w jednym projekcie? Właśnie po to są adresy!

W naszej pracowni występują dwa rodzaje urządzeń – o adresach 0x27 oraz o 0x3f. Koniecznie sprawdź u siebie! W naszym przykładowym kodzie adres zapisany jest w linii 6 (kolejna linia przygotowuje na inny adresik).

Pomiar prądu

Warto zdawać sobie sprawę z użycia prądu – jak widać z poniższych zdjęć wykonaliśmy pomiar i odnotowaliśmy różnicę w poborze prądu w zależności od trybu działania ekraniku LCD – bez podświetlenia (około 6 mA) oraz z podświetleniem (około 26 mA).

A tutaj pomiar prądu z włączonym podświetleniem:

Projektując swój układ warto brać pod uwagę „prądożerność” każdego urządzenia. Ale to na przyszłość. My przećwiczyliśmy mierzenie prądu 😉

(c) KG 2018

komunikacja I2C oraz SPI — LCD i nRF24

Dziś sporo o sposobach komunikacji innej niż UART – poznajemy  I2C oraz SPI.

Powyżej „zrzut ekranu” naszych zajęć 😉

Komunikacja I2C

Przeniesiona tutaj.

Komunikacja SPI

Przeniesiona tutaj.

Co dalej?

Oczywiście nic nie stoi na przeszkodzie by połączyć oba poznane dziś urządzenia – i zamiast wyświetlania na monitorze PC-ta (przez port szeregowy) wyświetlać na LCD-ku 16×2…. My na nastepnych zajęciach zastąpimy sterowanie naszymi pojazdami z czujki na podczerwień na wspomnianą właśnie komunikację radiową.

Mam nadzieję, że te nowe „zabawki” (klocki) rozbudzą Waszą wyobraźnię 😉

Kolejne zajęcia w dniu 16-maja o godz. 16:15.  Zapraszam!

(c) K.G. 2017

P.S.

Wpis edytowany w listopadzie 2019: komunikacja I2C oraz SPI przeniesiona do dówch oddzielnych części, bo (jak się okazało) – studenci dość często z tego korzystali.