Sterowanie serwem za pomocą joysticka

Na zajęciach sterowaliśmy serwomechanizmami za pomocą joysticka. Na początku używaliśmy niewielkiego modułu z joystickiem podłączanego bezpośrednio do Arduino. W drugiej części użyliśmy nakładki (shield) na Arduino z joystickiem oraz czterema przyciskami (podobnie jak na gamepadach).

Moduł z joystickiem

Moduł posiada pięć pinów. GND oraz 5V podłączamy do Arduino. VRx i VRy to piny sterujące odpowiednio osią OX (czyli lewo-prawo) oraz OY (czyli góra-dół). Podłączamy je do pinów analogowych. Ostatni pin odpowiada za przycisk, jednak nie używaliśmy go w tym zadaniu.

Prosty program wyświetlający położenie joystika

void setup(){
  Serial.begin(9600);
}
int x,y;
void loop(){
   x = analogRead(A0);
   y = analogRead(A1);
   Serial.print("x=");
   Serial.print(x);
   Serial.print(", y=");
   Serial.println(y);  
  }

Położenie na osi OX (także OY) to liczby z zakresu 0..1023. Położenie spoczynkowe powinno odpowiadać wartości 511 (liczby 0..510 to wychylenie w lewo, liczby 512..1023 to wychylenie w prawo). Użycie tego programu pozwoliło nam sprawdzić, że tak jednak nie jest – u nas joy w położeniu spoczynkowym miał wartości 514, 517 (oś OX i OY).

Podczas działania tego programu możemy postawić sobie następujące zadanie: ustawić pozycję joy-a w takim położeniu, aby odczyty były x=800 y=200. Okazuje się to jednak bardzo trudne! Widzimy więc, że sterowanie joy-em nie jest łatwe i wymaga sporo wprawy.

Wieżyczka

Używana przez nas wieżyczka (do której można przyczepić, np. kamerkę internetową by nią sterować) składała się z dwóch serw na podstawce. Umożliwia to poruszanie się mechanizmu na boki oraz w górę i dół.

Wszystkie potrzebne elementy połączyliśmy za pomocą płytki prototypowej. Zamiast zasilania z Arduino użyliśmy zewnętrznego koszyka na 4 baterie o łącznym napięciu 5V. Dlaczego tak zrobiliśmy? Chodziło nam o oddzielne zasilanie silników aby nie przeciążyć płytki Arduino – pojedyncze serwo może pobrać nawet 200mA prądu (co sprawdzaliśmy na poprzednich zajęciach), a wydajność prądowa Arduino UNO to około 200-400 mA. Dlatego dwa takie serwa mogą uszkodzić naszą płytkę. My użyliśmy oddzielnego zasilania silników aby temu zapobiec. WAŻNE: w przypadku używania kilku źródeł zasilania (u nas Arduino 5V i 4x baterie AAA) musimy uwspólnilić masy (GDN z Arduino, „minus” z bateryjki).

Użyliśmy płytki prototypowej, gdzie na jednej szynie (koloru niebieskiego) wetknęliśmy „-” z koszyka baterii oraz GND Arduino. Do tej „szyny” podłączone były masy serw (przewody koloru brązowego). Druga szyna (czerwona – z drugiej strony płytki, dla naszej wygody) doprowadzone miała przewód „+” z koszyka baterii i tam podłączone były zasilania silników serw (czerwone przewody serw). UWAGA: nie można łączyć pinu 5V Arduino z zewnętrznym zasilaniem baterii – może to spowodować uszkodzenie płytki! Łączymy (=uwspólniamy) jedynie masy. Przewody sterujące serwami (koloru żółtego) podłączyliśmy do pinów PWM Arduino UNO – u nas #3 i #5.

Program sterujący

Na początku standardowo dołączamy do programu bibliotekę umożliwiającą sterowanie serwami. Następnie dodajemy zmienne do obu serw, jedno odpowiedzialne za ruch góra-dół, a drugie lewo-prawo.

#include <Servo.h>
Servo GoraDol;
Servo LewoPrawo;

void setup (){
  Serial.begin(9600);
  GoraDol.attach(3);
  LewoPrawo.attach(5);
}
int x,y;

W kolejnej części deklarujemy zmienne odpowiadające za położenie obu osi joysticka – dokładnie tak, jak w pierwszym programie odczytującym położenia joy-a. Wyświetlamy wartości x oraz y w monitorze szeregowym. Joystick zwykle nie jest idealnie skalibrowany, jednak nie ma to znaczenia przy niewielkiej precyzji.

Funkcja map pozwala na łatwe proporcjonalne przeliczenie wartości. Używamy jej, ponieważ położenia joysticka są z zakresiu 0-1023, natomiast sterowanie serwem chcemy wyrażamy w stopniach 0-180. Wynik przypisujemy od razu do zmiennych x oraz y (używamy tych samych zmiennych, niszcząc ich poprzednie wartości). W argumentach funkcji wpisujemy zmienną do przeliczenia, następnie jej obecny zakres i na końcu zakres po zamianie. Po przeliczeniu wartości możemy je przekazać do serwomechanizmów.

   x=map(x,0,1023,0,180); //funkcja map
   LewoPrawo.write(x);
   y=map(y,0,1023,0,180);
   GoraDol.write(y);
   delay(10);

Nakładka (shield) na Arduino

Fajnym rozwiązaniem jest wykorzystanie specjalnej nakładki (shield), która poszerza możliwości Arduino. Piny obu komponentów pasują do siebie, więc nie da się pomylić przy wpinaniu nakładki. Joystick oraz przyciski są fabrycznie podłączone do pinów, więc nie musimy tego robić w programie. Na nakładce wszystkie piny są podpisane, więc później będziemy tylko operować odpowiednimi oznaczeniami pinów.

Modyfikacja programu – przycisk „zamrażający” położenie wieżyczki

Program sterujący jest bardzo podobny do poprzedniego. Jedyną różnicą jest brak podłączenia pinów cyfrowych. Dodatkową funkcją, którą wprowadzamy do naszego programu, jest zatrzymywanie serwa w ustawionej pozycji. Chcemy aby wciśnięcie wybranego przycisku (np. koloru czerwonego) zablokowywało dalsze sterowanie wieżyczką. Kolejne wciśnięcie tego przycisku powoduje odblokowanie sterowania. W tym celu do kodu wprowadzamy zmienną typu logicznego bool (nazwaną tryb) i ustawiamy ją na wartość true. Następnie wybieramy przycisk (np. ten czerwony), który ma sterować zatrzymaniem serwa i  sprawdzamy, który numer pinu u odpowiada. W naszym programie jest to pin 5.  Tworzymy instrukcję sterującą if, która wykona się po wciśnięciu przycisku. Do wartości zmiennej tryb, przypisujemy jej odwrotność. Czyli jeśli tryb jest true, zostanie zmieniony na false i odwrotnie. Funkcja delay() wprowadzamy aby zarejestrować tylko jedną zmianę ustawienia przycisku (przyciski lubią „drgać” co powoduje nie jeden „klik” a wiele takich „klików” – opóźnienie je zniweluje). Działa to w taki sposób, że jeśli tryb jest wartością false, czyli zostanie raz zmieniony we wcześniejszym if’ie, sterowanie joyem zostaje zablokowane. Natomiast po kolejnym użyciu przycisku, tryb zmieni się z false na true, a sterowanie zostanie odblokowane.

bool tryb=true;
void loop(){
  x=analogRead(A0);
  y=analogRead(A1); 
   if (digitalRead(5)==HIGH){
      tryb=!tryb;
      delay(50);
   }

   if(tryb==true){ 
   x=map(x,0,1023,0,180); //funkcja map
   LewoPrawo.write(x);
   y=map(y,0,1023,0,180);
   GoraDol.write(y);
  }
}

Podsumowanie

Jak można zauważyć programy umożliwiające sterowanie servami nie są skomplikowane ani długie. Można sprytnie wykorzystać komponenty posiadające więcej niż jedną oś ruchu, dzięki czemu nasze możliwości się poszerzają. Jednak precyzyjne sterowanie takimi joystikami nie jest łatwe…

(c) Ewelina, KG 2017

Sterowanie servem za pomocą potencjometru

Na ostatnich zajęciach łączyliśmy wiedzę nabytą na dwóch poprzednich spotkaniach, czyli działanie potencjometru oraz serva. Chcieliśmy wykorzystać możliwość zmiany nastawy potencjometru, w celu sterowania ramionami serwomechanizmu. Podobnie jak na zajęciach przedświątecznych, wykorzystamy do tego komendy biblioteki sterującej servami.

Sterowanie serva

#include <Servo.h>
Servo silnik;

void setup (){
  Serial.begin(9600);
  silnik.attach(3);
}

Servo podłączamy tak samo jak na przedświątecznych zajęciach, jednak w tym przypadku używamy 3 pinu, a sam mechanizm nazywamy silnikiem (linia #2 i #6).

Wykorzystanie potencjometru

int pot;
void loop(){
   pot=analogRead(A0);//odczytujemy liczby z zakresu od 0 do 1023
   pot=pot*180.0/1023;//zamienimy na liczby od 0 do 180
   Serial.print(pot);
   silnik.write(pot);
}

Na początku deklarujemy zmienną zapisującą stan potencjometru. W ciele funkcji void loop() podłączamy potencjometr do portu analogowego A0. Linia #4 przelicza zakres potencjometru. Jak pamiętamy, wynosi on od 0 do 1023, natomiast stopnie wychylenia serva chcemy wyrażać w zakresie 0-180. 180 konwertujemy na zmienną typu float dopisując do niej część dziesiętną w celu uniknięcia dzielenia całkowitego. W innym wypadku otrzymywalibyśmy nieprawdziwe wyniki, ponieważ wynikiem dzielenia 180/1023 zawsze będzie 0, przez co całe działanie również wyniesie 0. Przy zapisie 180.0/1023 mamy do czynienia z dzieleniem rzeczywistym, którego wynikiem będzie liczba rzeczywista. Następnie przy przemnożeniu przez zmienną całkowitą pot dostaniemy również liczbę rzeczywistą. Ostateczny wynik jest rzutowany na liczbę całkowitą w momencie przypisania operatorem równości.

Ulepszenie – dodatkowy if

W celu ulepszenia naszego kodu, chcieliśmy aby położenie ramion serwa było aktualizowane jedynie wtedy, kiedy zmienimy położenie potencjometru. Tym samym chcemy uniknąć sytuacji wydawania polecenia „ustaw serwo na pozycję XX” jeśli właśnie aktualną pozycją jest XX (nie ma to sensu, mimo tego, że to działa – jak w naszym pierwszym, prostym programie). Użyliśmy do tego instrukcji sterującej if. W linii #1 dopisaliśmy kolejną zmienną nazwaną old, która ma za zadanie zapisywać poprzedni stan położenia potencjometru (odczytanego napięcia). W warunkach if-a sprawdzamy, czy zmienna pot (czyli aktualny stan potencjometru), różni się od zmiennej old (czyli jego poprzedni stan).  Jeśli nie, funkcja Serial.print() nic nie wypisze i nie zmieniamy położenia serwa. W przeciwnym przypadku zostanie wypisane nowe napięcie, a ramiona serwa zmienią położenie. Na końcu przypisujemy zmienną old do pot, aby móc dokonać nowego porównania w kolejnej iteracji pętli. 

int pot, old; //old - zmienna zapisujaca poprzedni odczyt

void loop(){
  pot=analogRead(A0);
  pot=pot*180.0/1023.0; 
  if (pot!=old){ //aby zmieniac polozenie tylko wtedy, kiedy sie zmienilo, a nie wyswietlac polozenie ciagle
   Serial.print(pot);
   silnik.write(pot);
   old=pot; 
  }
}

Podsumowanie

Dzięki naszemu programowi możemy sterować ramionami serwa kręcąc potencjometrem. Przeliczenie wartości napięcia na stopnie umożliwia dość precyzyjne ustawienie serva.

2018, Ewelina (c)

Łączenie rejestrów przesuwnych oraz sterowanie serwomechanizmami.

Na ostatnim spotkaniu przed przerwą świąteczną rozwinęliśmy projekt rozpoczęty na poprzednich zajęciach tj. wyświetlanie cyfr przy pomocy wyświetlacza siedmiosegmentowego oraz rejestru przesuwnego. Główną korzyścią tej metody jest użycie jedynie trzech pinów cyfrowych Arduino. Okazuje się, że dołączenie drugiego wyświetlacza siedmiosegmentowego wymaga podłączenia drugiego rejestru przesuwnego, ale liczba pinów cyfrowych pozostaje taka sama !

Logika stosowania wielu rejestrów przesuwnych może być porównana do tworzenia jednego rejestru, który przedłużamy kolejnymi chipami 74HC595.

Podłączenie drugiego układu scalonego 74HC595 ogranicza się do podłączenia pinów RCLK oraz SRCLK do tych samych pinów arduino co odpowiadające RCLK oraz SRCLK piny pierwszego rejestru. Będzie to oznaczało, że nowy chip będzie on otrzymywał te same sygnały sterujące co pierwszy. Różnicą jest podłączenie pinu SER. Zamiast bezpośrednio do Arduino, podłączamy ten pin do wyjścia 9 naszego pierwszego rejestru przesuwnego. Dzięki temu całość będzie funkcjonowała jak jeden, przedłużony rejestr przesuwny.

 

Nasuwa się pytanie: jak zmodyfikować ostatnio napisany przez nas program tak, by poprawnie działał?
Odpowiedź jest prosta. Przygotowaliśmy się na to już na poprzednim spotkaniu i wystarczy wprowadzić nową wartość dla zmiennej ileScalakow (widocznej od razu w pierwszej linijce kodu), tak by równała się liczbie zastosowanych rejestrów, czyli 2:

Cały kod pozwalający sprawdzić działanie wyświetlaczy

#define ileScalakow 2
#define ilePinow ileScalakow * 8
int SER=8; 
int RCLK=9;
int SRCLK=10; 
int rejestr[ilePinow];

void setup(){
  pinMode(SER, OUTPUT);
  pinMode(RCLK, OUTPUT);
  pinMode(SRCLK, OUTPUT);
  czyscRejestr();
  zapiszRejestr();
}
void czyscRejestr(){
  for(int i=0; i<ilePinow; i++)
    rejestr[i]=LOW;
}
void zapiszRejestr(){
  digitalWrite(RCLK, LOW); 
  for(int i=ilePinow-1; i>=0; i--){
    digitalWrite(SRCLK, LOW);
    digitalWrite(SER, rejestr[i]);
    digitalWrite(SRCLK, HIGH); 
  }
  digitalWrite(RCLK, HIGH); 
}
void ustawPin(int ktory, int wartosc){
  rejestr[ktory]=wartosc;
}

void loop(){
  int i;
  for(i=0;i<ilePinow;i++)
    ustawPin(i, LOW);
    zapiszRejestr();
    delay(500);
   for(i=0;i<ilePinow;i++){
    ustawPin(i, HIGH);
    zapiszRejestr();
    delay(500);
}
}

Po tej prostej zmianie kod działa poprawnie. Jest to przykład jak odpowiednie wprowadzanie zmiennych pozwala na skalowalność i rozwijanie kreowanych programów.

Sterowanie serwomechanizmami

Serwomechanizm, lub potocznie serwo, to nic innego jak silniczek prądu stałego sterowany PWM (modulator szerokości impulsu) z podłączonym odpowiednim układem zębatek. To niewielkie i niedrogie urządzenie pozwala wygenerować niespodziewanie dużą siłę i moment obrotowy, szczególnie zważywszy na jego rozmiary i nieduży pobór mocy (przy mini serwach np. używanych przez nas SG92r produkcji TowerPro rzędu kilku watów).

Przed rozpoczęciem jakichkolwiek doświadczeń z serwami warto pamiętać właśnie o poborze mocy. Rekomendowane jest zasilanie ich z zewnętrznego źródła mocy np. baterii lub zasilacza prądu stałego. Przyczyną jest niebezpieczeństwo, jakie niesie za sobą skok natężenia prądu podczas ruchu serw – podłączenie kilku na raz do Arduino może niechybnie doprowadzić do spalenia sterownika.

Znalezione obrazy dla zapytania arduino servo batteries

Tworzenie programu sterującego serwami

Arduino posiada dedykowaną bibliotekę do sterowania serwami, co niezwykle ułatwia sterowanie i zarządzanie.

#include <Servo.h>

Nasz program pozwala na wpisywanie wartości do monitora szeregowego i dyktowanie ich serwomechanizmom.

Servo serwomechanizm;
int pozycja = 90;

void setup() 
{ 
 serwomechanizm.attach(9);
 Serial.begin(9600);
}

„Servo” jest formą deklaracji, że dany obiekt o nazwie „Serwmechanizm” ma być traktowany przez interpreter kodu jako serwomechanizm. Deklarujemy je w tej samej konwencji, co np. zmienne typu integer. Traktowanie go jak serwomechanizm oznacza, że możemy przypisać mu jakiś pin oraz pozycję (będą to odpowiednie zmienne w obiekcie Servo).

W naszym kodzie w etapie setup() przypisaliśmy pozycję wyjściową 90 stopni (2. linijka), pin 9 (7. linijka) oraz uruchomiliśmy monitor szeregowy dla częstotliwości 9600 baud. Następnie w loop() przy pomocy metody „parseInt” każemy „nasłuchiwać” wartości, które zostaną przypisane zmiennej „pozycja”.

void loop() 
{ 
 if (Serial.available() > 0) {
pozycja = Serial.parseInt();
 }
 if (pozycja > 0 && pozycja < 180) { 
 serwomechanizm.write(pozycja);
 } else { 
 pozycja = pozycja%160+10;
 serwomechanizm.write(pozycja);
 } 
 
}

Tym sposobem możemy sterować serwomechanizmem z klawiatury przypisując mu kąt od 0 do 180 stopni. Warto jednak pamiętać, by unikać skrajnych pozycji takich jak 0 i 180 stopni, gdyż w niektórych przypadkach może to doprowadzić do uszkodzenia serwomechanizmu.

Adnotacja: W bloku „else” umieściłem zabezpieczenie, które nie pozwoli również na przypisanie wartości większych niż 180. Była to nadprogramowa metoda, która pozwala ograniczyć przypisywane na serwo wartości tak, by zamykały się pomiędzy bezpiecznymi kątami 10 – 170 stopni. Sposoby zabezpieczania zależą od nas, jednak nie warto ich zaniedbywać. Szkoda naszego sprzętu i nerwów!

 

Pomiar prądu płynącego przez serwo.

Na bardziej ciekawych czekała również możliwość pomiaru prądu płynącego przez serwo. Warto pamiętać, że pomiar natężenia prądu należy przeprowadzać szeregowo względem badanego układu. Oznacza to, że multimetr w trybie pomiaru prądu musi być „po drodze” prądu między źródłem zasilania, a serwem. Dlatego zrobiliśmy to w następujący sposób:

Źródło napięcia (bez obaw, 5V i prąd zdecydowanie poniżej 1 A można swobodnie „izolować” suchymi dłońmi) dołączyliśmy do czerwonej sondy multimetru, a czarną do wejścia 5V serwa – jest to właśnie połączenie szeregowe.

Przy okazji mogliśmy zbadać wartość prądu pobieraną przez pracujące serwo. Wartości te na ogół wynosiły kilkadziesiąt mA, ale czasami (w skarajnym położeniu a także podczas zmiany położenia) wynosiły 100-200 mA. Oznacza to, że podłączenie kilku serw do Arduino jako źródła napięcia (a nie tylko do zadawania sygnału) skończyłoby się spaleniem płytki. Dlatego budując bardziej złożone układy z pewnością użyjemy zewnętrznych źródeł napięcia.

Do zobaczenia na kolejnym spotkaniu!
Maciej (c)

Zajęcia nr 5 – serwo silniki, map(), bluetooth

 Serwo silnik (a właściwie mikro-serwo)

serwo1Czyli silnik, który obraca się od 0 do 180 stopni (ma blokadę na inne wychylenia). Potem utrzymuje swoją pozycję. Służy do tworzenia obrotowych ramion itd…

Trzy przewody – zasilanie (czerowny +5V, czarny/brązowy GND) oraz jeden sterujący – musi być PWM. Za dużo nie wnikałem o co chodzi w sterowaniu tym silnikiem, tylko wspomniałem o potencjometrze wewnątrz i o wypełnieniu sygnału sterującego… więcej może później? Zobaczymy.

 

Do sterowania tym silnikiem użyliśmy 2 nowych funkcji z nowej biblioteki:

  • #include <Servo.h> – na początku programu informujemy, że chcemy funkcje z tej nowej biblioteki
  • Servo silniczek; tworzymy zmienną typu silnik-serwo, czyli właśnie o to nam chodzi!
  • silniczek.attach(3); powoduje przekazanie informacji do Arduino, że sterujemy silnikiem przez pin numer 3 (przypominam: musi być to pin PWM, czyli jak nie 3, to 5,9…)
  • silniczek.write(133); ustawia nasz silnik w pozycji 133 stopni. Albo na dowolny inny z zakresu 0..180 stopni. Dziecinie proste 😉

Serwo sterowane z klawiatury

Przypomnieliśmy sobie jak odczytywać liczby z klawiatury (funkcja parseInt() dla obiektu Serial) i stworzyliśmy program ustawiający silnik w pozycji wczytanej z klawiatury. Proste a przyjemne. No i zawsze warto powtarzać wiedzę 😉

Serwo sterowane potencjometrem

Połączenie poprzednich zajęć – potencjometr liniowy (dzielnik napięć!) wykorzystany do ustawiania pozycji serwa – ruszam „gałką” w lewo, orczyk w serwie obraca się w lewo. Tak samo w prawo. Fajne!

Serwo sterowane potencjometrem – program PRO

Dbamy o szczegóły – i nie chcemy ustawiać położenia serwa wówczas, gdy potencjometr nie zminił swojej pozycji. Bez złośliwości – my staramy się programować na serio

Prąd „zjadany” przez serwo – mierzymy!

W skrajnych ustawieniach serwa (tj. w okolicy 0 stopni, oraz w okolicach 180 stopni) słyszymy buczenie/piszczenie serwo-silnika. Coś się dzieje. Amperomierz w garść i mierzymy prąd.

serwo1

Przyjrzyj się uważnie obrazkowi i zwróć uwagę, jak podłączony jest amperomierz.

Oczywiście w wirtualnym Arduino (ciągle polecam circuits.io) silniczek serwo jest idealny i nie widzimy tego, co było u nas na zajęciach….

Dodatkowo: w przypadku mierników uniwersalnych ustaw największą wartość prądu, jaką się spodziewasz dostać – nie odwrotnie! W przeciwnym przypadku zwiększając zakres przepalisz bezpiecznik w multimetrze…

Funkcja map()

Czyli skalowanie wartości z jednego zakresu na drugi zakres. Przykład, z którym my się bawiliśmy: serwo silniczek sterowany potencjometrem. Odczytujemy nastawy potencjometru z portu analogowego Arduino jako liczbę (nazwijmy ją x) z zakresu 0..1023, a następnie ustawiamy serwo w położeniu z zakresu 0..180 stopni (nazwijmy te stopnie y). Czyli musimy dokonać zamiany wczytaj liczby x na y. Na zajęciach pokazałem skalowanie funkcją liniową, rozwiązaliśmy ten układ równań, ale Arduino jest także dla tych co tego nie umieją zrobić i przygotowało funkcję map(). W naszym przypadku będzie to:

y=map(x, 0, 1023, 0, 180);

Należy pamiętać, że funkcja map() działa tylko na liczbach całkowitych (int).

Serwo sterowane przez Androida – bluetooth XM-15B

Dlaczego ten? Bo działa w zakresie 3-6V, czyli można go bezpiecznie podłączyć do Arduino. Inne modele – popularne HC-05, HC-06 komunikują się przez 3.3V i wymagają „zbijania” napięcia (np. dzielnikiem napięć). To proste, ale… po co się w to bawić, jak można kupić właśnie moduł pozbawiony tej uciążliwości? Praujemy więc z XM-15B.

 

Pamiętajmy o łączeniu „na krzyż” portów RxD,TxD modułu XM-15B z portami RxD,TxD płytki Arduino (także tymi wirtualnymi).

Komunikacja z 8LAMP

Ze sklepu Play bierzemy prostą apkę i sprawdzamy, co ona wysyła do naszego bluetootha. Kod:

#include <SoftwareSerial.h>

#define RxD 8
#define TxD 9
SoftwareSerial btSerial(RxD,TxD);

void setup() {
  Serial.begin(9600);
  btSerial.begin(9600);
  Serial.println("start!");
}

void loop() {
  if (btSerial.available()){
    Serial.print("Odebrałem znak= ");
    Serial.println(btSerial.read());
  }  
}

Następnie tak modyfikujemy ten program, by wczytany znak sterował naszym serwem – guzik '1′ ustawiał serwo na 90 stopni, guzik '2′ na 10 stopni i guzik '3′ na 170 stopni. Inne modyfikacje mile widziane 😉

Ważne

Na następne zajęcia proszę o zainstalowanie ze sklepu Play aplikacji Arduino Bluetooth Controler bo będziemy sterować pojazdem.

Zajęcia nr 6 – pilot IR, fotorezystor, map() i serwa

Pilot na podczerwień – TSOP22xx

tsop22xx

Czyli wykorzystujemy bibliotekę IRLib wraz z czujką TSOP22xx. Przy tej okazji pokazałem, jak instalowac biblioteki w Arduino IDE na 2 sposoby: z pliku zip, oraz ze środowiska.

Cujka TSOP22xx pożera bardzo mało prądu (jedynie 5 mA – patrz nota katalogowa) i dlatego zdecydowałem się pokazać Wam podłączenie jej bezpośrednio do płytki Arduino (czyli bez przewodów lub płytki stykowej). Jedna nóżka czujki siedziała w GND, druga w pinie numer 13 (zasilanie VCC) a trzecia – sygnałowa – w pinie 12 Arduino – bardzo stabilna konfiguracja. Należało tylko włączyć zasilanie na 13-tce aby odbiornik podczerwieni pracował –  ale to już powinniśmy umieć (ponownie: pamiętacie „zabawy” z LED-ami? no właśnie po to one wszystkie…).

Nasz pierwszy projekt polegał na odczytywaniu kodów klawiszy z domowego pilota, a potem sterowanie trzema LEDami. Przy tej okazji poznaliśmy też wygodny zamiennik instrukcji if/else w języku C – a mianowicie switch/case.

Dzielnik napięć

Wróciliśmy do dzielnika aby pobawić się miernikami oraz… aby za chwilę wykorzystać je w projekcie inteligentnego oświetlenia sterowanego Arduio. Ale to za chwilę. Najpierw fajna (mam nadzieję) zabawa z multimetrem 😉dzielnik_napiec

Dzielnik napięć – bardzo podstawowa wiedza, ale niezbędna podczas zabawy z Arduino i podobnymi. Dlatego zajęcia rozpoczęliśmy od dwóch rezystorów o tej samej wartości, wówczas ze wzoru na dzielnik Uwy= Uwe*R/(R+R1)= 0.5*Uwe i przy pomocy miernika uniwersalnego mierzyliśmy napięcie Uwy. Jako źródło mieliśmy do dyspozycji baterie AAA (różnie – jedni 2 sztuki, inni 4) o różnych napięciu. Dlatego aby prawidłowo wykonać to ćwiczenie trzeba było najpierw zmierzyć napięcie źródła. Dzielnik napięć zbudowaliśmy na płytce stykowej, o tak:

dzielnik1

Gdy już prawidłowo zbudowaliśmy dzielnik napięć i rozumieliśmy co się dzieje z mierzonym napięciem, zastąpiliśmy fotorezystorem.

Fotorezystor

fotorezystor

Oświetlenie fotorezystora powoduje zmniejszenie jego rezystancji (a tym samym zwiększenie płynącego przez niego prądu, jeśli mamy stałe napięcie zasilania). Oświetlenie zmienialiśmy albo zasłaniając ręką fotorezystor, albo oświetlając go latarką z telefonu komórkowego. Dalej zamieniliśmy jeden z rezystorów z naszego dzielnika napięć na fotoopornik i przeprowadziliśmy pomiary napięcia. Układy doświadczalne prezentowały się w ten oto sposób:

dzielnik3 dzielnik2

Warto podkreślić, że istotne jest który rezystor zastępujemy fotoopornikiem. Rysunki poniżej przedstawiają dwa podobne układy dzielnika napięć – zwróć uwagę na wskazania napięcia przy zmianie oświetlenia:

dzielnik52 dzielnik51  Czyli w jednej konfiguracji napięcie rosło oświetlając dzielnik, w drugiej – napięcie malało. Najpierw każdy z nas ustalił więc, co ma na swojej płytce aby kontrolować swój układ.

Odczyt zastanego oświetlenia

W tym ćwiczeniu do zbudowanego układu podłączyliśmy Arduino z pinem analogowym i odczytywaliśmy napięcie, niezależnie od miernika – to ważne, aby kontrolować to co wypisuje nam Arduino niezależnym miernikiem (u nas multimetrem). Ponownie okazało się, że aby otrzymać wyniki bardzo zbliżone do multimetru należało najpierw upewnić się jakie mamy faktycznie napięcie 5V w naszym Arduino (wiadomo – uczniowie/studenci popełniają błędy –  a kto nie! – i płytka się uszkadza…. są więc płytki z napięciem 4.7V zamiast katalogowych 5V).

Inteligentne oświetlenie

Do układu podłączyliśmy LEDa, którego jasnością sterowaliśmy poprzez Arduino z pinem PWM (poprzednie zajęcia z przykładem Fade). Zabawa miała polegać na oprogramowaniu układu tak, aby LED gasł gdy jest dużo światła zastanego (mierzonego przez fotorezystor i wejście analogowe Arduino), oraz aby LED świecił mocniej i mocniej gdy światła zastanego braknie. Takie proste, ale inteligentne oświetlenie 😉

Tutaj poznaliśmy nową funkcję z biblioteki Arduino: map(). Funkcja ta przeskalowywała (liniowo) podaną wartość z pewnego zakresu (dziedziny, poniżej oznaczonej jako wartości od min_x do max_x), na inna wartość z innego zakresu (przeciwdziedzina, od min_y do max_y). Formalnie wygląda to następująco:

map(war,  min_x, max_x,  min_y, max_y)

co oznacza, że chcemy przeskalować wartość war z zakresu min_x do max_x, na wartość z przedziału min_y do max_y. W naszym przykładzie chodziło o przeskalowanie wartości odczytywanych przez analogRead (czyli wartości od 0 do 1023) do wartości podawanych do sterowania jasnością LEDa (przez PWM, czyli z zakresu 0..255). Dlatego skalowaliśmy

war2= map(war, 0, 1023, 255, 0);

To liniowe skalowanie przez funkcję map() nie ma „magii” w sobie, to proste wykorzystanie funkcji liniowej y=ax+b, znanej Wam z lekcji matematyki plus umiejętność rozwiązania układu równań. Dopowiadając: w liniowym skalowaniu mamy 2 nieznane parametry – współczynniki a i b prostej. Musimy więc podać dwa równania aby je wyznaczyć (chyba każdy pamięta, że do narysowania prostej potrzebne są tylko dwa punkty? więc stąd dwa równania…). Posługuję się wartościami krańcowymi, oczywistymi przy naszym zagadnieniu: chcę bowiem, by do PWMa trafiło 255 gdy na wejściu z analogRead-a było 0 (pierwsze równanie: y=255 gdy x=0), oraz chcę, by mieć wartość y=0 gdy podaję x=1023 (drugie równanie). Oba punkty podstawiam do niewiadomego y=a*x+b i otrzymuję układ równań. Funkcja map() znajduje a i b za nas i wyznacza każdą inną wartość leżącą na tej prostej.

UWAGA: map() działa tylko na liczbach całkowitych!

Przyjrzyjcie się ponownie mojemu rysunkowi – to prosta matematyka w zastosowaniu 😉

map2

Sterowanie jasnością LDEa przez PWM robiliśmy poleceniem analogWrite(9, war2);

Okazało się, że aby wszystko działało dość widowiskowo należało najpierw wyskalować nasze odczyty jasności zastanej zmniejszając zakres…. W wielu przypadkach było więc potrzebne:

war2 = map(war, 400, 800, 255, 0);

co sprawdziło się metodą prób-i-błędów – w tym celu mocno debugowaliśmy nasz kod wypisując na ekran monitora odczytywane liczby.

Serwo silnik (a właściwie mikro-serwo)

serwo1Czyli silnik, który obraca się od 0 do 180 stopni (ma blokadę na inne wychylenia). Potem utrzymuje swoją pozycję. Służy do tworzenia obrotowych ramion itd…

Trzy przewody – zasilanie (czerowny +5V, czarny/brązowy GND) oraz jeden sterujący – musi być PWM. Za dużo nie wnikałem o co chodzi w sterowaniu tym silnikiem, tylko wspomniałem o potencjometrze wewnątrz i o wypełnieniu sygnału sterującego… więcej może później? Zobaczymy.

 

Do sterowania tym silnikiem użyliśmy 2 nowych funkcji z nowej biblioteki:

  • #include <Servo.h> – na początku programu informujemy, że chcemy funkcje z tej nowej biblioteki
  • Servo silniczek; tworzymy zmienną typu silnik-serwo, czyli właśnie o to nam chodzi!
  • silniczek.attach(3); powoduje przekazanie informacji do Arduino, że sterujemy silnikiem przez pin numer 3 (przypominam: musi być to pin PWM, czyli jak nie 3, to 5,9…)
  • silniczek.write(133); ustawia nasz silnik w pozycji 133 stopni. Albo na dowolny inny z zakresu 0..180 stopni. Dziecinie proste 😉

Serwo sterowane z klawiatury

Przypomnieliśmy sobie jak odczytywać liczby z klawiatury (funkcja parseInt() dla obiektu Serial) i stworzyliśmy program ustawiający silnik w pozycji wczytanej z klawiatury. Proste a przyjemne. No i zawsze warto powtarzać wiedzę 😉

Prąd „zjadany” przez serwo – mierzymy!

W skrajnych ustawieniach serwa (tj. w okolicy 0 stopni, oraz w okolicach 180 stopni) słyszymy buczenie/piszczenie serwo-silnika. Coś się dzieje. Amperomierz w garść i mierzymy prąd.

serwo1

Przyjrzyj się uważnie obrazkowi i zwróć uwagę, jak podłączony jest amperomierz.

Oczywiście w wirtualnym Arduino silniczek serwo jest idealny i nie widzimy tego, co było u nas na zajęciach….

Dodatkowo: w przypadku mierników uniwersalnych ustaw największą wartość prądu, jaką się spodziewasz dostać – nie odwrotnie! W przeciwnym przypadku zwiększając zakres przepalisz bezpiecznik w multimetrze…

Serwo sterowane pilotem na podczerwień

W tym przykładzie wróciliśmy do początku zajęć i ponownie wykorzystaliśmy pilot od telewizora  – tym razem czytywaliśmy klawisze i ustawialiśmy serwo na konkretną wartość kąta. Dwa przyciski obracały serwo w lewo i w prawo, trzeci zaś ustawiał serwo w pozycję 90 stopni.

Serwo pracy ciągłej (aka 360 stopni)

Serwo obrotowe360stop. FS90R 1,3kg/cm FeetechPoznaliśmy też serwa obracające się „w kółko”, ale z kontrolą szybkości swoich obrotów. Sterowanie polegało na używaniu funkcji writeMicroseconds(), w której komenda STOP dla silnika wymagała podania wypełnienia 1500 ms, natomiast wypełnienie z zakresu 1501-2000 ms oznaczało obrót w prawą stronę z prędkością proporcjonalną do tego wypełnienia (i analogicznie z obrotami w lewą stroną – wypełnienie z przedziału 1000-1499 ms).

Ta sama funkcja writeMicroseconds() może być przydatna w korygowaniu niedoskonałości tanich, chińskich serw, które nie trzymają katalogowych parametrów – obrót od 0 do 180 stopni. Proszę tylko obchodzić się z nią ostrożnie, bo z poprzedniego ćwiczenia – gdzie mierzyliśmy prąd zjadany przez serwo – wiemy, że dużo się dzieje w skrajnych położeniach.

Koniec? Początek!

Z wielkim niedosytem kończymy nasze spotkania w ramach Talentów XXI w. Niedosyt bierze się z faktu, że umiemy obsługiwać kilka fajnych „klocków” i aż się prosi, aby je teraz połączyć w jakąś całość (samochodzik sterowany pilotem, albo obrotowa wieżyczka z laserem). Ale czas naszych spotkań dobiegł końca. Cóż… zachęcam do samodzielnej pracy i koniecznie pochwalcie się swoimi osiągnięciami – dlatego dla Was jest to początek przygody z Arduino (mam nadzieję!). Proszę śmiało pisać do mnie na email! Pozdrawiam i dziękuję za wspólną pracę, K. Gawryluk

Zajęcia nr 6 – fotorezystor, dzielnik napięć, map(), serwo silnik i znowu map()

Dzielnik napięć
dzielnik_napiec

Bardzo podstawowa wiedza, ale niezbędna podczas zabawy z Arduino i podobnymi. Dlatego zajęcia rozpoczęliśmy od dwóch rezystorów o tej samej wartości, wówczas ze wzoru na dzielnik Uwy= Uwe*R/(R+R1)= 0.5*Uwe i przy pomocy miernika uniwersalnego mierzyliśmy napięcie Uwy. Jako źródło mieliśmy do dyspozycji baterie AAA (różnie – jedni 2 sztuki, inni 4) o różnych napięciu. Dlatego aby prawidłowo wykonać to ćwiczenie trzeba było najpierw zmierzyć napięcie źródła. Dzielnik napięć zbudowaliśmy na płytce stykowej, o tak:

dzielnik1

Gdy już prawidłowo zbudowaliśmy dzielnik napięć i rozumieliśmy co się dzieje z mierzonym napięciem, zastąpiliśmy fotorezystorem.

Fotorezystor

fotorezystor

Oświetlenie fotorezystora powoduje zmniejszenie jego rezystancji (a tym samym zwiększenie płynącego przez niego prądu, jeśli mamy stałe napięcie zasilania). Oświetlenie zmienialiśmy albo zasłaniając ręką fotorezystor, albo oświetlając go latarką z telefonu komórkowego. Dalej zamieniliśmy jeden z rezystorów z naszego dzielnika napięć na fotoopornik i przeprowadziliśmy pomiary napięcia. Układy doświadczalne prezentowały się w ten oto sposób:

dzielnik3 dzielnik2

Warto podkreślić, że istotne jest który rezystor zastępujemy fotoopornikiem. Rysunki poniżej przedstawiają dwa podobne układy dzielnika napięć – zwróć uwagę na wskazania napięcia przy zmianie oświetlenia:

dzielnik52 dzielnik51  Czyli w jednej konfiguracji napięcie rosło oświetlając dzielnik, w drugiej – napięcie malało. Było to przyczyną kilku wątpliwości na naszych zajęciach… Proponuję pobawić się tym w domu (na wirtualnym Arduino, jeśli nie posiadamy płytki).

Inteligentne oświetlenie

Do układu podłączyliśmy LEDa, którego jasnością sterowaliśmy poprzez Arduino z pinem PWM (poprzednie zajęcia + poprzednia praca domowa). Zabawa miała polegać na oprogramowaniu układu tak, aby LED gasł gdy jest dużo światła zastanego (mierzonego przez fotorezystor i wejście analogowe Arduino), oraz aby LED świecił mocniej i mocniej gdy światła zastanego braknie. Takie proste, ale inteligentne oświetlenie 😉

Tutaj poznaliśmy nową funkcję z biblioteki Arduino: map(). Funkcja ta przeskalowywała (liniowo) podaną wartość z pewnego zakresu (dziedziny, poniżej oznaczonej jako wartości od min_x do max_x), na inna wartość z innego zakresu (przeciwdziedzina, od min_y do max_y). Formalnie wygląda to następująco:

map(war,  min_x, max_x,  min_y, max_y)

co oznacza, że chcemy przeskalować wartość war z zakresu min_x do max_x, na wartość z przedziału min_y do max_y. W naszym przykładzie chodziło o przeskalowanie wartości odczytywanych przez analogRead (czyli wartości od 0 do 1023) do wartości podawanych do sterowania jasnością LEDa (przez PWM, czyli z zakresu 0..255). Dlatego skalowaliśmy

war2= map(war, 0, 1023, 0, 255);

To liniowe skalowanie przez funkcję map() nie ma „magii” w sobie, to proste wykorzystanie funkcji liniowej y=ax+b, znanej Wam z lekcji matematyki plus umiejętność rozwiązania układu równań. Dopowiadając: w liniowym skalowaniu mamy 2 nieznane parametry – współczynniki a i b prostej. Musimy więc podać dwa równania aby je wyznaczyć (chyba każdy pamięta, że do narysowania prostej potrzebne są tylko dwa punkty? więc stąd dwa równania…). Posługuję się wartościami krańcowymi, oczywistymi przy naszym zagadnieniu: chcę bowiem, by do PWMa trafiło 255 gdy na wejściu z analogRead-a było 1023 (pierwsze równanie: y=255 gdy x=1023), oraz chcę, by mieć wartość y=0 gdy podaję x=0 (drugie równanie). Oba punkty podstawiam do niewiadomego y=a*x+b i otrzymuję układ równań. Funkcja map() znajduje a i b za nas i wyznacza każdą inną wartość leżącą na tej prostej.

UWAGA: map() działa tylko na liczbach całkowitych!

Przyjrzyjcie się ponownie mojemu rysunkowi – to prosta matematyka w zastosowaniu 😉

map1

Okazało się, że  w wyniku różnego łączenia fotoopornika w układ niektórzy uczniowie musieli stosować:

war2 = map(war, 0, 1023, 255, 0);

co oznaczało taką sytuację:

map2

Serwo silnik (a właściwie mikro-serwo)

serwo1Czyli silnik, który obraca się od 0 do 180 stopni (ma blokadę na inne wychylenia). Potem utrzymuje swoją pozycję. Służy do tworzenia obrotowych ramion itd…

Trzy przewody – zasilanie (czerowny +5V, czarny/brązowy GND) oraz jeden sterujący – musi być PWM. Za dużo nie wnikałem o co chodzi w sterowaniu tym silnikiem, tylko wspomniałem o potencjometrze wewnątrz i o wypełnieniu sygnału sterującego… więcej może później? Zobaczymy.

 

Do sterowania tym silnikiem użyliśmy 2 nowych funkcji z nowej biblioteki:

  • #include <Servo.h> – na początku programu informujemy, że chcemy funkcje z tej nowej biblioteki
  • Servo silniczek; tworzymy zmienną typu silnik-serwo, czyli właśnie o to nam chodzi!
  • silniczek.attach(3); powoduje przekazanie informacji do Arduino, że sterujemy silnikiem przez pin numer 3 (przypominam: musi być to pin PWM, czyli jak nie 3, to 5,9…)
  • silniczek.write(133); ustawia nasz silnik w pozycji 133 stopni. Albo na dowolny inny z zakresu 0..180 stopni. Dziecinie proste 😉

Serwo sterowane potencjometrem

W tym przykładzie wróciliśmy do poprzednich zajęć i ponownie wykorzystaliśmy potencjometr – tym razem czytywaliśmy wartości napięcia na potencjometrze przez Arduino (i wejście analogowe, np. A0) a następnie ustawialiśmy serwo na konkretną wartość kąta. Ponownie użyliśmy funkcję map() w taki oto sposób:

kąt = map( potencjometr, 0, 1023, 0, 180);

gdzie kąt to właśnie wartość kąta, na jaką ma się ustawić serwo (z zakresu 0..180 stopni), a potencjometr to wartość napięcia na wyjściu z potencjometra (z zakresu 0..1023). Upewnij się, że rozumiesz kolejność przekazywania parametrów do funkcji map().

Program działał na prostej zasadzie:

  • potencjometr = analogRead(A0);
  • kąt = map( potencjometr, 0, 1023, 0, 180);
  • silniczek.write(kąt);

i ponownie od początku. Taki program miał jednak pewien problem, gdyż gdy nic nie zmienialiśmy na potencjometrze, to nasz program ciągle przeliczał wartość napięcia na kąt i ciągle ustawiał serwo w pozycji, w której już był! To głupie, prawda? Jak na pierwsze rozwiązanie OK, ale po dłuższym przyjrzeniu się widać, że nie jest dobrze. Dlatego zaproponowałem ulepszyć program tak, by serwo nie było ustawiane gdy pozycja potencjometru się nie zmieniła. W tym celu należało pamiętać poprzednie ustawienia potencjometru (lub poprzedni kąt) i porównywać tą wartość z nowymi ustawieniami. Zaproponowałem taki oto kod:

#include <Servo.h>
#define potencjometr A0

Servo silniczek;  
void setup() {
  Serial.begin(9600);
  silniczek.attach(3);
  pinMode(potencometr, INPUT);
}

int pot, kat, ost_kat;
void loop() {
  pot = analogRead(potencjometr);
  kat = map(pot, 0, 1023, 0, 180);
  if (kat != ost_kat){
    Serial.print(pot);
    Serial.print(" czyli  ");
    Serial.println(kat);
    silniczek.write(kat);           
    ost_kat=kat;
  }
  delay(100);                 
}

Gratuluję tym, którym udało się samodzielnie na to wpaść! Przy okazji: w powyższym programie jest o jedną zmienną za dużo… nie ma bowiem potrzeby tworzyć zmiennej pot. Można się jej pozbyć i zastąpić dwie linijki tak:

int kat, ost_kat;
void loop() {
  kat = analogRead(potencjometr);
  kat = map(kat, 0, 1023, 0, 180);
...
}

Kluczowa tutaj linijka to  kat = map(kat, 0, 1023, 0, 180); którą należy rozumieć tak, że nowa wartość zmiennej kat zostaje ustawioina na postawie funkcji map() ze starej wartości zmiennej kat. Symbol = („równa się”) jest tak zwanym w informatyce operatorem left-assign operator (czyli operator przypisania lewostronnego, tj. najpierw obliczamy wszystko z lewej strony, a dopiero potem obliczona wartość przekazana jest to prawej strony – zmiennej). Z matematycznego punktu widzenia jest to skomplikowana funkcja rekurencyjna…. ale tutaj symbol = trzeba rozumieć w sposób informatyczny.

Prąd „zjadany” przez serwo – mierzymy!

W skrajnych ustawieniach serwa (tj. w okolicy 0 stopni, oraz w okolicach 180 stopni) słyszymy buczenie/piszczenie serwo-silnika. Coś się dzieje. Amperomierz w garść i mierzymy prąd.

serwo1

Przyjrzyj się uważnie obrazkowi i zwróć uwagę, jak podłączony jest amperomierz.

Oczywiście w wirtualnym Arduino silniczek serwo jest idealny i nie widzimy tego, co było u nas na zajęciach….

Dodatkowo: w przypadku mierników uniwersalnych ustaw największą wartość prądu, jaką się spodziewasz dostać – nie odwrotnie! W przeciwnym przypadku zwiększając zakres przepalisz bezpiecznik w multimetrze…

Gratulacje

Wypada pogratulować jednemu z uczestników BTXXIw, który w międzyczasie zbudował układ sterujący serwem za pomocą… fotorezystora! To świetny przykład na to, że nie ma co się nudzić na moich zajęciach – jeśli wyprzedzasz grupę, wykombinuj coś samemu! A ten projekt nie jest bynajmniej głupi – może to być sterowanie jakimś silnikiem w kierunku światła… Gratuluję pomysłowości Mariuszowi Karpowiczowi z II LO. Kto zabłyśnie następnym razem? Nagrody czekają …

Praca domowa

Zbudować układ w wirtualnym Arduino z serwem i zrobić tak, aby czytać z klawiatury kąt, na jaki należy ustawić silniczek. Zajrzyj do poprzednich notatek z naszych spotkań aby przypomnieć sobie o prawidłowym czytaniu liczb z portu szeregowego Arduino.