Wracamy do huśtawki z nowym podejściem – sterowaniem z wykorzystaniem PID-a. Niestety, konstrukcja mechaniczna uniemożliwiła poprawną pracę układu… trzeba ponownie popracować nad mocowaniem ramienia łączącego serwo z pierścieniem rury.
Warto przeczytać ten artykulik ze wprowadzeniem do PID-a:
Mamy Nowy Rok 2022 i pierwsze spotkanie Koła Fi-BOT. Fajnie, że studenci pracują pomimo przerwy świątecznej, bo wyniki są bardzo ciekawe!
Pan Stanisław uparł się na dopracowaniu konstrukcji mechanicznej oraz oprogramowania. Sam nie wiem, co było bardziej marudne… Przypomnę na czym polega zabawa w huśtawkę – należy tak sterować położeniem rury (góra/dół – tym zajmuje się serwosilniczek), aby kulka znajdująca się wewnątrz znalazła się w środku rury. To dość znane zagadnienie, ale Pan Stanisław podszedł do tego niestandardowo – zastosował wzorki z fizyki dla zsuwającej się kulki z równi pochyłej (z uwzględnieniem jej obrotów, czyli mechanik bryły sztywnej). Nie ma tu żadnego PID-a, tylko czystka fizyka! Czy to działa? Działa! o dziwo – jak dla mnie – bo myślałem, że taki sposób spowoduje ciągłe bujanie piłki w lewo i w prawo. A tu proszę! Gratulacje! Ze względu na zbliżającą się sesję egzaminacyjną opis rozwiązania zostanie dodany gdzieś w miesiącu luty (po sesji).
W międzyczasie Pan Bartek kombinuje z produkcją płytek PCB na hobbystycznej frezarce CNC, a Pan Dominik wymyślił bardzo nieszablonowy sposób poruszania huśtawką (warto go zrealizować! choć będzie trzeba popracować mechanicznie).
Fajnie, że właśnie tak rozpoczął się Nowy Rok na Fi-BOTcie!
Poniedziałek to nie dzień spotkań koła, ale kto chętny – może! I tak Pan Stanisław postanowił wykorzystać okienko w swoich zajęciach i przystąpił do ulepszania konstrukcji…
Konstrukcja „buja” się już mniej, pomimo zastąpienia trytytek sztywną wykałaczką 😉 Liczy się pomysłowość! Dalej są spore luzy, bo otwory w obejmie są za duże w stosunku do grubości wykałaczki. Wybór wykałaczki nie jest jednak przypadkowy – idealnie rozmiarami pasuje do otworów w metalowych (oryginalnych) profilach Maker Beama (podwieszenie w górnej części konstrukcji).
Na uwagę zasługuje pierwsza próba łączenia serwa z obejmą rury – wykorzystano gruby, małoplastyczny pręcik. Te dwie jego cechy są tutaj jego zaletami – tworzy on bowiem sztywne połączenie. Były problemy przy jego wyginaniu i przetykaniu przez otwory, ale co tam. Jest pierwsze podejście. Czy działa? Filmik poniżej:
Działa to zdecydowanie gorzej niż się spodziewaliśmy 😛 Wszędzie te luzy! No i nogi (płozy?) zdecydowanie za krótkie (i za lekkie, trzeba dociążyć). W międzyczasie pojawił się Pan Bartek i zaproponował wymianę pianki (w mocowaniu serwa) na coś sztywniejszego… korek! Sam się zdziwiłem, że to Pan Bartek zaproponował! Wersja 2 i pół po lekkiej modyfikacji:
Jednak to niewiele pomogło… Pan Bartek skrzywił się tylko, spytał o średnicę rury i chyba postanowił przygotować nowy projekt w 3D aby przyspieszyć pracę nad projektem 😉 Zobaczymy!
Studenci dzielnie pracują nad projektem sterowanej huśtawki (samopoziomującej się). Schemat układu z poprzedniego tygodnia:
A tera pierwsze próby jego wykonania „w realu”:
Jednak wszystko się „buja” 😛 Roboczo wykorzystane trytytki powodują duże luzy w obu osiach, a dalej niejasny jest sposób połączenia orczyka serwa z drugim pierścieniem obejmującym rurę. Coś tu trzeba wymyślić (wydrukować?).
Już wiemy, do czego zmierzamy w tym semestrze – będziemy stabilizować huśtawkę! Projekt bardzo ciekawy i w zasięgu ręki każdego początkującego hobbysty. O co chodzi? Na huśtawce poruszać się będzie kulka (różowa na rysunku poniżej), która zmieniając swoje położenie przechyli huśtawkę w inne położenie. Ale jest też silniczek (zielony), którym będzie sterować Arduino UNO (pomarańczowe) tak, by kulka nie wypadła z huśtawki i pozostawała w środku (położeniu równowagi).
musimy określać położenie kulki na huśtawce – wykorzystamy poznany tydzień temu czujnik odległości HC-SR04
przechylanie huśtawki: mikroserwo powinno wystarczyć, ale jeśli okaże się za słabe – to mamy też serwa.
Huśtawka z pleksi rury.
Pan Stanisław tak się zaangażował w projekt, że zakupił już element konstrukcyjny huśtawki – rurę (ładna! długa: 50cm, ale gruba, bo ścianki 3mm, no i droga…). Pomysł fajny, ale czy czujnik odległości na końcu takiej rury będzie dobrze wskazywać pomiary odległości? W końcu emituje on dźwięki, które będą „buszować” w zamkniętej rurze i kolejne pomiary mogą być bezsensowne. Dlatego trzeba było to sprawdzić.
Na nasze szczęście okazało się, że (o dziwo!) czujnik działa poprawnie! Sprawdziliśmy to z wykorzystaniem metrówek.
Silniczek – a dokładniej mikro serwo.
Proponuję wykorzystać mikro serwo do poruszania ramieniem huśtawki. Jest to silnik sterowany sygnałem PWM, który możemy ustawić w określonej pozycji: od 0 (zera) do 180 stopni. Do obracającego się orczyka przyczepimy element łączący go z ramieniem huśtawki.
W tym konkretnym przypadku możemy podłączyć zasilanie serwa bezpośrednio do płytki Arduino UNO, bo pojedyncze serwo pożera jedynie ~200mA prądu (nie możemy przekraczać 500mA, bo uszkodzimy Arduino lub podłączonego z nim kompa – a tego nie chcemy).
Programowanie polega na użyciu biblioteki Servo.h i znajdującego się w niej obiektu Servo. Tworzymy zmienną (u nas silnik) i przypisujemy jej sterowanie do pinu 9 – metoda attach(). Następnie ustawiamy ramię silnika na określoną pozycję – tutaj 5, 90 i 175 stopni – za pomocą metody write(). Celowo pomijam skrajne wartości 0 i 180 stopni, bo to nadwyręża serwa.
Zwracam także uwagę, że po ustawieniu serwa na konkretną wartość należy dać mu czas na realizację tego polecenia – serwa działają powoli! Nasze MG90S obraca się o 60 stopni w 0,1 sekundy – dlatego 2s opóźnienie przed kolejnym ustawieniem to rozsądna wartość.
Budowa konstrukcji.
I tu zaczynają się schody… Trzeba się trochę pobrudzić 😉 Może sklejka lub podobny, miękki materiał – łatwy do obróbki bez zaawansowanego osprzętu? A może wspomniane profile Maker Beam?
Jeszcze zobaczymy co zrobimy, ale najpierw trzeba przemyśleć połączenie silniczka z ramieniem huśtawki. Są różne koncepcje. Poniżej wynik prac przy tablicy….
Trzymak do rury.
Aby złapać rurę (huśtawkę) i przytwierdzić ją do stabilnej konstrukcji – trzeba mieć odpowiedni uchwyt. Pewnie można poszukać w jakimś popularnym sklepie z materiałami budowlanymi, ale postanowiłem lekko pomóc i zaprojektowałem na szybko taki uchwyt – poniżej zdjęcie jego połówki, bo właśnie dwie takie części tworzą całość. Uchwyt ma sporo nadmiarowych „uniwersalnych” otworów – tak na przyszłość, aby nie tylko pełnił funkcję trzymania rury i obracania jej, ale i mechanizmu połączenia z silniczkiem… Powinno się przydać.
Jak widać sporo się działo… a to dopiero początek tego projektu 😉
Pan Rafał kontynuuje prace nad Wojnami Robotów. Po udoskonaleniu sterowania kołami zrobił kontroler z płyt pilśniowych i korków do wina – powstał PAD drewniak o nazwie GARY.
Jak się okazuje, ulepszone sterowanie + PAD umożliwiają działanie pojazdu jako… Line Follower 😉 Więcej na stronie projektu.
Serwa
Pan Tomasz zbadał kolejne serwa. Poniżej wyniki:
Cztery nowe serwa (jedna „partia”, a nie losowe z roku czy dwóch) a jakie rozrzuty! Widać, że
obroty w lewo != prawo
…
…
…
Szeryf v0.2
No i mamy nową, świecką tradycję – wchodząc na zajęcia MUSISZ OBOWIĄZKOWO zagrać w Szeryfa 😉 Nowa wersja (v0.2) nie powaliła moich beta-testerów na kolana, trzeba więc dalej pracować, udoskonalać…
A punktacja (czasami dwie rozgrywki, pokazujące progress) : RŁ: 3819, TK: 1337, 3225, P: 0, BB: 799, 1371. Pan Paweł nie ustrzelił wszystkich 4 rzutek jednym magazynkiem (7 pocisków) i dlatego zero punktów – dość deprymujące, muszę to zmienić. Ponownie wygrał Pan Rafał! przypadek? czy mamy w grupie prawdziwego Szeryfa? 😉
Pan Rafał chciał zaprezentować działanie swojego pojazdu i… bateria się skończył! OK, od czego mamy drugą? Oj, druga też! A to pech. Więc może pożyczyć od kolegi? Tomasz nie wygląda na skąpca 😉 No jasne, te dwie (rozładowane) to już dawno pożyczone od P. Tomasza. Zaraza…
I w ten oto sposób mamy testowanie bezprzewodowego pojazdu na… kablu zasilającym! Pięknie! XXI wiek 😛
Pan Tomasz zbadał drugie serwo. Wyniki niebawem, tylko dodam mu jeszcze 4 kolejne serwa 😉
Szeryf v0.1
Na tych krótkich zajęciach (z przyczyn osobistych) ZMUSIŁEM studentów do zagrania (przetestowania) moją grę – Szeryf v0.1. Gra powstała w processingu i miała za zadanie przetestować możliwość precyzyjnego sterowania modułem JOY-a w czasie rzeczywistym.
Precyzyjnym obiektem był CELOWNIK (kolor fioletowy) i należało nakierować go na poruszający się (ruchy Browna) obiekt RZUTKA (kolor biały). Strzela się wciskając przycisk w module JOY-a (każdy wie, że podczas strzału lekko zmienia się pozycja modułu) . Gracz jest więc Szeryfem i ma do dyspozycji 6 pocisków (piękna grafika w lewym-górnym rogu) i strzela na rzutek. Zdobywa punkty jeśli trafi, a wartość nagrody jest iloczynem prędkości rzutki i odległości od środka tarczy (to zmusza gracza do ucieczki od bezpiecznej pozycji w środku i „sępienia się” na nadlatującą RZUTKĘ).
Nie trzeba dodawać, że nikt nie chciał grać w moją grę 😛 Scenariusz słaby? Wszyscy lubią ratować Księżniczki lub biegać po Skelige z dwoma mieczami na plecach? A może to z grafiką coś nie tak? Chyba nie chodziło też o kwestię utrudnionego sterowania, bo ruch góra/dół w module JOY-a był faktycznie ruchem CELOWNIKA góra/dół, natomiast lewo/prawo było odwrócone – i CELOWNIK poruszał się prawo/lewo. Po pierwszej zmianie „na gorąco” dalej nie było entuzjazmu w mojej pseudo-rozrywce. Dlatego bez ceregieli wykorzystałem swój status na uczelni i przymusiłem uczestników Fi-BOTa do rozgrywki. W ten sposób pozyskałem darmowych beta-testerów 😉
Studenci okazali się niezłymi Szeryfami! Wygrał Pan Rafał, który zdobył ponad 122k punktów! Brawo!
Plan rozbudowy Szeryfa (pomysły z „rękawa”):
level 0: RZUTKA nie porusza się, a pojawia się (losowa pozycja) na ustalony czas by potem zniknąć; im szybciej zestrzelisz rzutkę, tym więcej punktów; (C) BB
level 1: RZUTKA porusza się ruchami Browna (to już jest)
uwzględnić czas gry: wynik końcowy punktów podzielić przez czas? szybszy Szeryf to lepszy Szeryf!
level 3: więcej RZUTEK? niby dlaczego tylko jedna…
level 4: Szeryf dwuręczny: jeden moduł JOY-a jest mało irytujący? dwa takie to już istny obłęd!
zamiast irytujących modułów JOY-a przyklejone żyroskopy/akceleratory do rąk i sterowanie bezprzewodowe? Kto wie, kto wie 😉
Chyba wprowadzę zasadę na kolejnych Fi-BOTach, że wchodząc na zajęcia MUSISZ OBOWIĄZKOWO zagrać w Szeryfa. To w nawiązaniu do klasyka i obowiązkowej kawy + WZ-etki. Ja natomiast nie staram się o trofeum Złotej Patelni a z dopracowanym produktem lecę prosto do Steama/GOGa/Epica i sukces! i chwała! kasa i uwielbienie! 😉
Pan Rafał przygotowuje drugi pojazd do pracy + coś tam programuje ze sterowaniem… Pewnie w następnym tygodniu zobaczymy efekty tej pracy. Porównamy też sklepowe koła z naszymi – wydrukowanymi w 3D.
Prędkość serw
Pan Tomasz wykorzystał swój układ mierzący liczbę obrotów na minutę do zbadania zależności zmiany tej prędkości od wypełnienia sygnału sterującego serwem. Serwem pracy ciągłej sterujemy podając sygnał PWM z wypełnieniem z przedziału 1000-2000 us (metoda writeMicroseconds() z klasy Servo), gdzie wartość 1500 us odpowiada zatrzymaniu serwa, a wartości 1500-2000 przekładają się na coraz szybsze obroty serwa w jedną stronę (1500-1000 us w przypadku obrotów w przeciwną stronę). Tyle teorii. A praktyka?
No właśnie – serwo serwu nie równe, a tanie serwa dlatego są właśnie tanie, bo nie trzymają się ściśle tym teoretycznym wymogom. Okazuje się, że pozycja STOP jest „gdzieś w okolicy” sygnału 1500. Obroty w prawo i w lewo też nie są równe – pomimo równego odejścia od pozycji STOP. Na poniższym wykresie widać, że odejście wypełnieniem PWM o 100 us skutkuje prędkością 117 rmp (wartość 1600 us) oraz 99 rpm (wartość 1400 us). Wykres nie jest idealnie symetryczny względem osi x=1500.
Oczywiście jeden pomiar to za mało, więc procedura została powtórzona dla kolejnych przebiegów, a wyniki zapisane w kolejnych plikach tekstowych. Wniosek – rezultaty są powtarzalne.
Mając więcej pomiarów, można policzyć odchylenie standardowe i dodać słupki błędów… ale nie przesadzajmy 😉 Dla pewności pomiarów jeden raz dwukrotnie zwiększyliśmy czas zliczania prędkości (czyli dla każdej wartości wypełnienia czekamy 2s i zliczamy impulsy) – wyniki są zgodne.
Wnioski: 1) prędkość nie rośnie liniowo ze zmianą wypełnienia sygnału sterującego, 2) STOP dla serwa jest „gdzieś” w okolicach 1500 us, ale drobna zmiana sygnału może już poruszyć serwo w jednym kierunku, podczas gdy ta sama wartość wypełnienia nie wystarczy by ruszyć serwo w przeciwnym kierunku, 3) prędkość nasyca się około ~200 us wartości skrajnych (1000-1200 us -> prawie jedna wartość prędkości, tak samo jak 1800-2000 us), 4) ruch w lewo i prawo nie jest symetryczny.
Dalsze prace: Można kontynuować sprawę testowania serw, poddając tym samym próbom inny egzemplarz tego samego serwa – aby przekonać się, czy widoczne tu zachowanie jest typowe dla każdego serwa, czy jednak trafiło się nam wyjątkowy egzemplarz a inne są inne.
gnuplot
Do stworzenia wykresów „na szybko” wykorzystałem program gnuplot – świetny w takich sytuacjach (wykresy na szybko, dane z numeryki, dane z Arduino). „Surowe” dane wypisywane w oknie Monitora porta szeregowego wyglądały następująco:
Wystarczy przekopiować te dane do pliku tekstowego (np. serwo.txt) a następnie uruchomić gnuplot i wydać polecenie wykresu danych z pliku:
plot 'serwo.txt’ using 2:4
Polecenie to każe wykorzystać plik 'serwo.txt’ oraz kolumnę 2 dla x-ów, kolumnę 4 dla wartości y-ków. Jak widać nie trzeba kopiować danych do arkusza kalkulacyjnego, usuwać niepotrzebne napisy (tutaj: „Servo:”, „Predkosc:”) czy też tworzyć wykres z zaznaczonych tam komórek. Wystarczy posłużyć się prostą komendą plot podając kolumny do wykorzystania (dyrektywa using).
Gnuplot ma bardzo dużo możliwości – ale tutaj wspomnę tylko o słupkach błędów – gdyby były gdzieś w pliku, np. w siódmej kolumnie, to by wystarczyło wpisać następujące polecenie do ich wyświetlenia:
plot 'serwo2.txt’ using 2:4:7 with yerror
ale cóż – my nie mamy siódmej kolumny… zamiast tego niech wykreślone będą 10% błędy, czyli ponownie wykorzystamy czwartą kolumnę, dzieląc ją przez 10:
plot 'serwo2.txt’ using 2:4:($4/10) with yerror
A może słupki na osi x i y? czemu nie!
plot 'serwo2.txt’ using 2:4:($2/50):($4/10) with xyerror
Pan Rafał oprogramowywał sterowanie swojej „kanapki” z wykorzystaniem modułu BT. Nie jest to może najlepsze rozwiązanie sterowania, ale szybkie i bezproblemowe (jasne, jasne – czytaj dalej). Proste, po włączamy dwie standardowe biblioteki Servo.h oraz SoftwareSerial.h i piszemy prosty kod.
A tu klops! Ilekroć przesyłane są dane przez moduł BT, to serwa „wariują”, zachowują się zupełnie nieoczekiwanie. Można to sprawdzić powyższym kodem gdzie przesyłamy 'W’ przez Bluetooth i silnik kręci się na maksa do przodu, a następnie wysyłamy z apki kolejne, nic nie znaczące znaczki (wciskamy inne, zdefiniowane przyciski, np. 'A’, 'D’ itd). Te komendy powinny zostać zignorowane (brak odpowiednich instrukcji w switch-u), a serwo powinno utrzymywać swój dotychczasowy ruch. Tak się jednak nie dzieje…
Jak zawsze najpierw należało sprawdzić przewody połączeniowe, ale to nie one okazały się przyczyną problemów. Grzebanie w internecie okazało się sukcesem – biblioteka SoftwareSerial.h korzysta z tego samego układu czasowego (timera) w Artudino co biblioteka Servo.h, do sterowania PWM. Chodzi o to, ze Arduino (a dokładniej ATmega 328P) posiada trzy niezależne timery: dwa 8-bitowe oraz jeden 16-to bitowy. Właśnie z tego ostatniego korzystają dwie wspomniane biblioteki i powstaje konflikt!
Rozwiązaniem może być alternatywna biblioteka do obsłui serw: ServoTimer2. Już sama nazwa wskazuje, że korzysta ona z drugiego timera – nie powinno być więc konfliktu z SoftwareSerial.h. Lekko zamieniamy kod programiku i sprawdzamy zachowanie serw podczas przesyłania danych z BT. Klops: jednak nie pomogło.
Jeśli nie biblioteka serw, to szukamy zamiennika do drugiej biblioteki – komunikacji szeregowej. Tutaj trafiamy na AltSoftSerial i nasze nadzieje nie gasną 😉 Ponownie modyfikujemy kod (uwaga: pinami do komunikacji są „na sztywno” pin 9 oraz 10 – nie ma możliwości wyboru, jak w przypadku biblioteki SoftwareSerial.h).
Nie poddajemy się i stosujemy dwa zamienniki bibliotek jednocześnie – bum! mamy to! działa!
#include <ServoTimer2.h>
#include <AltSoftSerial.h>
AltSoftSerial bt;//Arduino UNO -> RxD=9, TxD=10, nie ma wyboru!
ServoTimer2 silnik;
void setup() {
Serial.begin(9600);
bt.begin(9600);
silnik.attach(3);
Serial.println("start!");
}
void loop() {
if (bt.available()){
char komenda=bt.readString());
Serial.print("odebrano= ");
Serial.println(komenda);//dla sprawdzenia
switch (komenda){
case 'W': silnik.write(1000); break; //przod
case 'S': silnik.write(2000); break; //tyl
case 'X': silnik.write(1500); break; //stop
}//switch
}
Niewielkie zmiany, ale istotne. Warto zwrócić uwagę, że funkcja write() dla obiekty ServoTimer2 zapisuje mikrosekundy wypełnienia, czyli dokładnie to co robi funkcja writeMicroseconds() z obiekty Servo (biblioteka Servo.h), co jest trochę mylące. Wystarczy mieć to na uwadze i będzie OK.
Jeszcze jedno: wspomniany problem nie występuje na starszych wersjach środowiska i bibliotek Arduino IDE. Warto sprawdzić.
Wojny robotów: trzecia „kanapka” i korki (przymyślenia).
Pan Kacper buduje trzeci pojazd „kanapka”. Mamy nowe, trochę zmodyfikowane tymczasowe koła – choć drukarka 3D pracuje powoli, to i tak trzeba się natrudzić przy składaniu całej konstrukcji (jakieś 3h?).
Myślałem, że wykorzystanie korków od wina jest oryginalne – a tu się okazało, że takie zabiegi były znane i (zapewne) stosowane przynajmniej od roku 1200+. Źródła historyczne donoszą, że prawdziwy podróżnik awanturnik na szlaku musiał posiadać zestaw korków – pewnie w celach majsterkowania, bo po cóż innego miał on je w swoim ekwipunku?
Wojny robotów: szybkość obrotowa (RPM) silczka
Pan Tomasz z kolei zawziął się na zbadaniu prędkości obrotej kół (RPM = Revolutions Per Minute). Prosty układ pomiarowy (tymczasowy) pozwolił mu zmierzyć tą prędkość. Układ składa się z potencjometru do sterowania prędkością serwa Feetech FT90R (z prawej strony), oraz czujki szczelinowej (umieszczonej na – oczywiście – korku do wina) wraz z przymocowanym kołem zębatym (druk 3D).
Pan Tomasz wykorzystał przerwania z Arduino UNO (a dokładniej jedno, ze zboczem narastającym). cdn…
Maskotka
BB zakończył prace nad płytą główną do Maskotki – aktualnie przygotowywane jest lepsze sterowanie prędkością kół – kontroler PID.