Transoptor szczelinowy (czujnik szczelinowy)

Słowem wstępu…

Nasz Fi-Bot’owy zespół wciąż pracuje nad swoimi pojazdami. Podzieleni w pary wciąż ulepszamy swoje maszyny dodając kolejne części i klepiąc nowe linijki kodu.

Tym razem przyszedł czas na rozwiązanie problemu zliczania obrotów kół, tak aby można było lepiej sprawdzać i kontrolować prędkość naszego pojazdu.

Z pomocą przyszedł nam właśnie…

Transoptor Szczelinowy

Jak działa to wspaniałe urządzenie? (już wcześniej się bawiliśmy takim modułem – wyznaczając wartość przyspieszenia ziemskiego).

Na samym początku potrzebowaliśmy kółka zębatego (poniżej: wydrukowane w 3D), które ma dokładnie 16 ząbków i które umieszczamy na osi obrotowej naszego koła(silniczek ma wał obrotowy po dwóch stronach). Następnie zamontowaliśmy czujnik szczelinowy tak, aby kółko zębate znajdowało się między nim.

Poniżej wykorzystałem moje ponad przeciętne zdolności artystyczne aby lepiej Wam to zobrazować. Kółko obracając się raz po raz przesłania wiązkę światła emitowanego z transoptora (a dokładniej z diody) i sygnał ten nie trafia do bramki – mamy stan wysoki (logiczną jedynkę), pokazuje to górny rysunek (lewa strona), albo przepuszcza wiązkę i mamy wówczas stan nisko (czyli zero, prawy obrazek). Obracając się mamy szereg stanów wysokich i niskich na wyjściu z transoptora.

Transoptor szczelinowy mówiąc łopatologicznie sprawdza czy między nim coś jest, lub nie ma. Jeżeli nasze koło się obraca, a razem z nim oś wraz z zębatką – czujnik szczelinowy jest w stanie odczytać:

  • czy między nim jest ząbek koła – i zwrócić 1
  • czy też ząbka niema – i zwrócić 0

Łatwo możemy więc wywnioskować że jeden obrót koła to „przejście” transoptora po 16 ząbkach koła zębatego.

Niestety nasze urządzenie nie odczyta zmiany stanów w czujniku w ten sposób:

101010101010101010

ponieważ urządzenie to nadaje nam z prędkością nawet do kilku tysięcy stanów na sekundę (w zależności od modelu), więc Arduino odczytywać będzie to mniej więcej tak:

0000000000011111111111111100000000000000111111111111111111111100000000

gdzie '1′ oczywiście znaczy, że w danej chwili ząbek jest między szczeliną, a '0′ że go nie ma.

Tak więc do zliczania obrotów musieliśmy napisać swój program. Na tym zakończy się teoria a zacznie się…

 

Transoptor w praktyce

Jeżeli chodzi o podłączenie modułu do Arduino to nie sprawia to większych trudności. Zasilanie modułu podpinamy pod pin z napięciem 5V, uziemienie do GND, natomiast ostatni kabelek wędruje pod wybrany przez nas pin cyfrowy. W moim przypadku był to pin z numerem 7.

Przejdźmy więc do pisania kodu 😉

Oczywiście pomysłów na rozwiązanie tego problemu jak i wykonanie i działanie samego programu było kilka, ja zamieszczam pod spodem swoją wersje.

void setup() {
  pinMode(7,INPUT);
  Serial.begin(9600);
}

bool zn;
bool temp=0;
int rotates=0;
int indents=0;

void loop() {
  zn = digitalRead(7);
  if(zn>temp)
  {
    indents++;
    temp=zn;
    Serial.print(rotates);
    Serial.print(" rotates ");
    Serial.print(indents);
    Serial.println(" indents");
  }
  else
  {
    temp=zn;
  }
  if(indents==16)
  {
    rotates++;
    indents=0;
  }
}

Na początku:

  1. w funkcji setup ustawiamy tryb wybranego przez nas pinu na input – czyli tryb wejścia, ponieważ dane będą wchodzić przez niego do naszego Arduino. Robimy to za pomocą funkcji pinMode(7, INPUT)
  2. uruchamiamy komunikacje szeregową z komputerem za pomocą funkcji Serial.begin(9600) – to właśnie na naszym monitorze będziemy odczytywać liczbę obrotów koła

Zanim jeszcze wejdziemy do naszej głównej pętli wprowadziłem potrzebne zmienne:

  1. bool zn – zmienna zn (od słowa znak) będzie przechowywać aktualny stan podawany przez czujnik. Typ zmiennych 'bool’ nadaje się do tego idealnie bo przechowuje On tylko 1 lub 0 – inaczej prawda lub fałsz.
  2. bool temp – zmienna temp (od słowa ang. temporary – tymczasowy) będzie zmienną pomocniczą. Na początku musimy przypisać jej wartość '0′, jednak jej działanie opiszę dokładniej później.
  3. int rotates – zmienna rotates (od słowa ang. rotations – obroty) jak sama nazwa wskazuje będzie przechowywać liczbę aktualnie zliczonych obrotów. Na początku będzie ich oczywiście 0.
  4. int indents – zmienna indents (od słowa ang. indents – wcięcie) będzie przechowywać liczbę zliczonych ząbków.  Na początku będzie ich oczywiście 0.

Przejdźmy więc do głównej funkcji programu – loop.

Na początku do zmiennej zn wczytujemy stan z czujnika – będzie to stan 1 lub 0 w zależności od tego czy w pozycji startu ząbek akurat jest między czujnikiem czy nie (nie ma to żadnego znaczenia). Używamy do tego funkcji digitalRead(7) gdzie '7′ jest oczywiście numerem naszego pinu.

Następnie pojawia się warunek if – jeżeli nasz wczytany stan zn będzie większy od stanu trzymanego w zmiennej pomocniczej temp – czyli będzie równy 1 – wtedy :

  1. indents ++   – zwiększ liczbę zliczonych ząbków o 1
  2. temp = zn   – zmienna temp przyjmuje wartość zn
  3. wypisz policzone obroty i wcięcia

w przeciwnym przypadku, jeżeli będzie mniejszy lub taki sam, wykonuje się tylko przypisanie wartości temp :

  1. temp = zn   – zmienna temp przyjmuje wartość zn

Co tu się właściwie stało? Tak jak pisałem wcześniej Arduino odczytuje stany czujnika w następujący sposób:

000000001111111111000000000000000111111111111110000001111111111111

Można tu wyróżnić sekwencje zer i jedynek. Sekwencja jedynek oznacza że przez tą krótką chwile czujnik odczytał ząbek między widełkami. Kiedy więc będzie można powiedzieć że ząbek przeskoczył przez czujnik? Wtedy i tylko wtedy gdy transoptor wczyta jedynkę po zerze. Zaczyna się wtedy sekwencja jedynek – ząbek jest chwile między widełkami, następnie znowu sekwencja zer – ząbka brak, i znowu sekwencja jedynek, czyli kolejny ząbek.

000000001111111111000000000000000111111111111110000001111111111111

Załóżmy że program zaczyna się od sekwencji zer – podawane stany będą ciągle zerami. Dopóki aktualny stan nie będzie większy od temp czyli nie będzie wynosił 1 (bo temp przyjmuje wartość '0′ na starcie programu), licznik ząbków nie powiększy się.

Kiedy program natrafi na pierwszą jedynkę – licznik ząbków powiększy się o 1, natomiast zmienna temp która do tej pory trzymała 0, przyjmie wartość 1. Gdy do zmiennej zn zostanie wczytana następna jedynka z sekwencji, licznik nie powiększy się ponieważ nie został spełniony warunek:   zn>temp   –   przecież jedynka nie jest większa od jedynki 😀

I tak w kółko dopóki znów nie zacznie się sekwencja zer – oczywiście warunek dalej nie zostanie spełniony bo 0 tym bardziej nie jest większe od 1, ale za to temp przyjmie wartość 0, tak żeby warunek spełnił się na początku kolejnej sekwencji jedynek i licznik ząbków znów powiększył się o 1.

Ostatnia i niezbędna rzecz w naszym programie – warunek   if (indents==16).

Musimy pamiętać że cały czas dodawaliśmy ząbki koła zębatego, a w sumie jest ich 16. Wnioskując logicznie Arduino musi odczytać te 16 ząbków, po czym:

  1. rotates++   – zwiększyć liczbę obrotów o 1
  2. indents=0   – wyzerować aktualnie zliczone ząbki, ponieważ już zatoczyło się pełne koło. Nasz program będzie je teraz dodawał od nowa.

Podsumowanie

Zakładam że połowa osób przysnęła czytając moje wypociny, dlatego zachęcam do samodzielnej zabawy. Na pewno umiejętność używania czujnika szczelinowego przyda się jeszcze nie raz.

Na przyszłych zajęciach będziemy dalej ulepszać nasz pojazd, szczególnie skupimy się na usprawnieniu sterowania 🙂 Zachęcam do bycia na bieżąco.

 

(c) Przemysław Baj 2018

pojazd cz.1

Dziś było więcej mechaniki, niż elektroniki… choć na koniec udało się Wszystkim złożyć swoje pojazdy i uruchomić – gratuluję! Za tydzień sterowanie i pierwsze jazdy próbne 😉

(c) KG 2018

Bluetooth

Z wielkim sukcesem i zadowoleniem oprogramowaliśmy moduł Bluetooth XM-15B

  • biblioteka SoftwareSerial.h — bardzo przydatna w pracy z bluetooth, bo potrzebujemy komunikacji szeregowej (Arduino UNO ma tylko jedną parę Tx/Rx!)
  • tworzymy zmienną SoftwareSerial i przypisujemy jej dwa piny cyfrowe – w kolejności Rx, Tx
  • nie zapomnijcie o włączeniu metodą begin(9600)
  • łączenie „na krzyż” z modułem XM-15B, czyli: Tx <–> Rx, Rx <–> Tx
  • czytanie i interpretowanie komend…. a myślicie, że po co ciągle ćwiczyliśmy czytanie z klawiatury? teraz się przyda!

Poniżej działanie aplikacji Blutooth Control Lamp i wyświetlaczem 7-mio segmentowym:

Podłączamy sterownik silników L298N i kolejna apka z Androida: Android RC

A tu mamy to, co niebawem nas czeka: troszkę większe silniczki (37Dx73L) z zaprojektowanym i wydrukowanych „trzymakiem”

Chciałem pogratulować całej 5-tce obecnej na dzisiejszych zajęciach – za zaangażowanie w pracę nad projektem – i naukę nawet w długi weekend majowy. Jestem przekonany, że Wam się to opłaci.

(c) KG 2018

Silniczek DC – mostek H – pracowita majówka?

….opis później…

Propozycja zajęć

W związku z majówką (długą! brrr) i moimi/naszymi pomysłami na robota R2D2 proponuję spotkać się w nastęnym tygodniu:

  • poniedziałek 30 kwietnia, godz. 10:00, lub
  • środa 2 maja, godz. 10:00 — zapraszam!

Niech każdy student wyśle mi email z informacją, co wybiera – bo choć rozmawialiśmy o środzie, to mi się ten poniedziałek bardziej podoba. Ale proszę o współpracę. O wynikach pointofmuję tutaj.

Zajęcia potrwają ~1.5h i skupimy się na sterowaniu pojazdem (proszę mieć ze sobą piloty na podczerwień – od TV, radia… ewentualnie smartfona z nadajnikiem podczerwieni). Będzie też komunikacja Bluetooth, więc proszę o zainstalowanie dwóch aplikacji (przewidziane są problemy z internetem w Kampusie, więc netu nie będzie):

(c) KG 2018

czujka wibracji – elektroniczna kostka do gry

Kolejny raz podstawy – czyli rozmawialiśmy oo doborze odpowiedniego opornika dla układu zasilanie-LED. Mierzyliśmy napięcia (czyli spadki napięć) oraz prądy. Każdy musi przez to prześć, dlatego zachęcam do zabawy w wirtualnym Arduino (jest tam multimetr, płytka stykowa i różne LEDy – proszę nie zlekceważyć tego ćwiczenia!).

Czujka drgań

Bardzo prosta, ale ile zabawy 😉 Prosta, bo ma trzy pin-y: VCC i GDN (czyli zasilanie, z przedziału 3.3V-5V) oraz pin Dout – sygnał cyfrowy informujący o drganiu. Cena to kilka złotych, zależnie od miejsca kupna.

Do czego? no wiele zastosowań, ale… takie śmieszniejsze (ale czy oby na pewno?) to alarm otwartej szuflady. Czyli: jeśli chcemy mieć pewność, że nasz młodszy brat nie będzie grzebać w naszej szufladzie, to … montujemy taki układ do wnętrza szuflady i jeśli jednak będzie próba jej otwarcia – to odezwie się alarm (lub taki incydent zostanie zapisany w pamięci). Potem można przejrzeć „dziennik zdarzeń” i przekonać się, czy faktycznie braciszek nie myszkował w naszej szufladzie 😉

To bardzo czuły czujnik

Właściwie to wystarczy stuknąć w stół i te minimalne drgania wprawią w działanie nasz czujnik. Pirwszy, prosty programik:

byte czujka=7;

void setup(){
  pinMode(czujka, INPUT);
  Serial.begin(9600);
}

void loop(){
  if (digitalRead(czujka)==0)
    Serial.println("czujka! drgania!");
}

Nie pomyslilem się – rejestrujemy drgania gdy odczytujemy napięcie LOW (czyli zero). Gdy brak drgań – odczytujemy stan HIGH (1). A może tak rozbudować program, aby zliczał liczbę drgań?

byte czujka=7;
unsigned int licz=0;

void setup(){
  pinMode(czujka, INPUT);
  Serial.begin(9600);
  licz=0;
}

void loop(){
  if (digitalRead(czujka)==0){
    licz++;
    Serial.print("czujka! drgania!  ");
    Serial.println(licz);
  }
}

Proszę uruchomić powyższy programik i zaobserwować, jak szybko nasz licznik (zmienna licz) rośnie. Przy okazji przekoanliśmy się na własne oczy, co się dzieje gdy przepełnimy licznik (testowaliśmy to na zmiennej typu byte, która zlicza liczby od 0..255 – łatwo taki licznik przepełnić!).

Kostka do gry – liczby losowe, nie pseudo-losowe!

Pokazałem państwu swój kolejny układ – elektroniczną kostkę do gry. Drgania powodują tworzenie liczb losowych (prawdziwie losowych, nie pserudo-losowych). Jak? wymyśliłem sobie tak: zliczam liczbę drgań, a gdy drgania ustaną – wynik wyświetlam z operacją modulo 6 + 1 (modulo 6 – to liczby z zakresu 0..5 więc dodaję jeszcze 1 aby mieć sześcienną kostkę do gry). Całość prezentuję na 7-segmentowym wyświetlaczu (no i dodatkowo „dla bajeru” uruchamiam melodyjkę).

Na powyższej fotce widzimy Arduino UNO (w wersji Ferrari – czerwoniutkie) z nakładką – proto-shieldem (aby nie trzeba było się bawić w oddzielną płytkę stykową). Roboczo wszystko połączone jest przewodami ze skrętki, ale całość nieźle trzyma się kupy 😉

Praca domowa

Proponuję pobawić się w wirtualnym Arduino i poćwiczyć wyświetlanie liczba na 7- segmentowym wyświetlaczu – to może się jeszcze wielokrotnie przydać!Nie zapomnijcie zapisać wyników Waszej pracy by potem pochwalić się nimi!

(c) KG 2018

RGB LED – PWM (podstawy)

Niby podstawy – ale jakie kolorowe 😉 No i bardzo przyszłościowe – niebawem się okaże, jak barwne mogą być nasze elektroniczne gry zręcznościowe!

Sprawa jest prosta – w tej diodzie RGB są właściwie TRZY diody – czerwona, niebieska i zielona. Dzięki mieszaniu trzech kolorów otrzymujemy każdy inny, dowolny kolor – w tym także biały. Właśnie biały to bardzo ważny kolor – potrzbny nam do codziennego życia – dlatego też właśnie w 2014 r. uchonorowano Japończyków nagrodą Nobla za zrobienie niebieskiego lasera.

RGB LEDy występują z dwoma typami obudowy – matową (polecam) oraz przezroczystą. Ta pierwsza daje światło bardziej rozproszone, trudno nawet zobaczyć te trzy oddzielne LEDy.

Wspólna anoda, wspólna katoda.

RGB LED ma cztery „nóżki” (wyprowadzenia): skoro sa tam trzy LEDy (czerwony, zielony i niebieski) to niepotrzebną rozrzutnością było by mocowanie sześciu nóżek – po dwie dla każdej diody. Oczywiście dioda ma mieć możliwość oddzielnego sterowania (włącznaia), dlatego te trzy nóżki muszą być – natomiast resztę (też 3) można ze sobą uwspólnić – czyli połączyć. Tym oto sposobem zredukowaliśmy nadmiar wyprowadzeń i mamy dwie odmiany RGB LEDa: wspólna katoda (czyli wspólny minus), oraz wspólna anoda (czyli wspólny plus). Wiele mówiący rysunek:

Podłączenie – pamiętaj o oporniku dla KAŻDEGO LEDa!

Niby oczywiste, ale warto o tym przypominać… Wybieramy rezystory 220 Ohma (bo takie mamy pod ręką) – co nie jest idealne, gdyż każdy LED ma inne napięcie przewodzenia… My to świadomie ignorujemy i dla prostoty (czytaj: wygodny) używamy tych samych oporników. Ale coś za coś – nie będziemy mieć tej samej jasności każdego LEDa (płynie przez nie inny prąd!) a więc biały nie będzie taki biały…

(Może znajdę czas i dopiszę tu kiedyś konkretne wartości oporników dla każdego LEDa)

Pierwszy program

Proponuję zdefiniować trzy zmienne (byte, int – jakkolwiek, oczywiście #define będzie też OK) dla każdej nóżki diody RGB (ja swoje podłączyłem do pinów 11,10 i 9). Dzięki temu będziemy wiedzieli, co właściwie robimy.

byte ledR=11;
byte ledG=10;
byte ledB=9;

void setup(){
  pinMode(ledR, OUTPUT);
  pinMode(ledG OUTPUT);
  pinMode(ledB, OUTPUT);
}

void loop(){
  digitalWrite(ledR, LOW); //włączamy czerowny kolor
  delay(1000);
  digitalWrite(ledR, HIGH); //wyłączamy czerowny kolor
  delay(1000);
  digitalWrite(ledG, LOW); //włączamy zielony kolor
  delay(1000);
  digitalWrite(ledR, HIGH); //wyłączamy zielony kolor
  delay(1000);
  digitalWrite(leB, LOW); //włączamy niebieski kolor
  delay(1000);
  digitalWrite(ledB, HIGH); //wyłączamy neiebieski kolor
  delay(1000);

  //a teraz mieszamy kolory
  digitalWrite(ledB, LOW); //włączamy niebieski kolor
  digitalWrite(ledR, LOW); //włączamy niebieski kolor... mamy FIOLET!
  delay(1000);
  digitalWrite(ledB, HIGH); 
  digitalWrite(ledR, HIGH); 
  delay(1000);
}

Nie pomyslilem się – włączamy LEDy wyłączając napięcie – komendy digitalWrite(ledX, LOW) – bo program dotyczy RGB LEDa ze wspólną anaodą. Napięcie na wspólnej nóżce wynosi 5V dlatego muszę podać napięcie mniejsze (LOW) na drógą nóżkę, aby prąd płynął (nie płynie, jeśli nie ma różnicy napięć! jak woda, która się nie przelewa gdy tern jest płaski).

Mieszanie kolorów ułatwia poniższa grafika:

Warto trochę pobawić się w rozbudowę programu i uzyskać ciekawe kolorki… to na prawdę fajne!

Drugi program – mieszanie z „czułością” 😉

Pamiętamy działanie cyfrowych pinów PWM? Są one oznaczone tyldą (~, „falką”) i w przypadku LED-a umożliwiają płynną zmienę jasności świecenia. Ja od razu do podłączenia wybrałem właśnie piny PWM więc mogę przystąpić do zabawy w zmienę jasności

byte ledR=11;
byte ledG=10;
byte ledB=9;

void setup(){
  pinMode(ledR, OUTPUT);
  pinMode(ledG OUTPUT);
  pinMode(ledB, OUTPUT);
}

void loop(){
  for (i=255; i>0; i--){
     analogWrite(ledR, i); //powoli włączamy czerowny kolor
     delay(10);
  }
  for (i=255; i>0; i--){ 
     analogWrite(ledB, i); //powoli włączamy niebieski kolor 
     delay(10); 
  }   
  delay(1000);
}

Fajna i prosta sprawa, nieprawdaż? Ci, którzy nie pamiętają o co chodzi – zachęcam do uruchomienia Przykłady -> 01 Basics -> Fade z Arduino IDE.

Prąd pobierany z Arduino

Każdy kolor to około 20mA, więc ustawiając światło białe mamy około 60mA prądu. Oznacza to, że nasze Arduino UNO nie pociągnie za dużo takich LEDów (bez kombinowania, ale o tym później).

1 RGB LED = 3 piny PWM !!!

Oczywiście, jeśli chcemy mieć możliwość kontrolowania jansności. To dużo – Arduino UNO ma tylko (aż?) 6 takich pinów. Co więc zrobić, aby świecić 5 RGB LEDami? albo 10? Nie da się? Da się, da. Na kolejnych zajęciach właśnie się tym zajmiemy. Zapraszam! 

Praca domowa

Proponuję poćwiczyć programowanie struktularne – stworzyć funkcję

void rgb(byte red, byte green, byte blue),

która ustawi trzy LEDy na zadane wartości – niech dodatkowo podawane wartości będą z przedziału 0..100, a więc należy dokonać odpowieniej konwersji na liczby z przedziału 0..255. Jeśli tak zrobomy, to wówczas rgb(30,0,0) oznacza lekki kolor czerwony, rgb(0,100,0) to jansy kolor zielony a rgb(77,0,77) jasno-fioletowy. Proszę pobawić się w wirtualnym Arduino!

(c) KG 2018

Prototyp – gra zręcznościowa + (ponownie) podstawy

Pam Maksymilian rozbudował program o karanie za zbyt wczesne wciśnięcie przycisku – gratulacje! Wgrał owoce swojej pracy z wirtualnego Arduino do naszego prototypu i… działa! 

Mamy też nowych zainteresowanych Fi-BOTem- z Wydziału Mat-Inf – dlatego przy tej okazji wróciliśmy do podstaw (pinMode, digitalWrite). 

Za tydzień (10 kwietnia) będą ponownie podstawy – piny PWM – ale… z diodami RGB, oraz (popularnymi) listwami RBG. Wszystko to ma rozbudzić w nas twórczość nowego propotypu gry zręcznościowej. Zapraszam!

(c) KG 2018

Projekt — wirtualny, choć całkiem realny ;-)

Całe zajęcia poświęciliśmy wirtualnemu Arduino – aby każdy z nas miał swoją kopię układu nad którym pracujemy oraz… aby popracować samodzielnie w domu i zabłysnąć na kolejnych zajęciach 😉

Niestety – okazało się, że tinkercad.com nie oferuje sterownika HD44780 do obsługi popularnego LCD16x2 – musieliśmy wykorzystać komunikację UART (obiekt Serial). Troszkę szkoda…

W realu wygląda to tak:

Prawie ostateczna wersja oprogramowania (z kilkoma udziwnieniami – potencjometrami do konfigurowania trudności (szybkości) losowych zdarzeń) ale bez liczenia RUND i licznika czasu do końca gry:

byte btns[6]={2,3,4,5,6,7};
byte leds[5]={12,11,10,9,8};
byte i;
int czas_staly, czas_los;

void setup()
{
  Serial.begin(9600);
  for (i=0;i<6; i++)
    pinMode(btns[i], INPUT_PULLUP);
  for (i=0;i<5; i++)
    pinMode(leds[i], OUTPUT);
  Serial.println(analogRead(A5));
  srand(analogRead(A5));
  
  czas_staly=2*analogRead(A0);
  czas_los=2*analogRead(A1);
  Serial.print("KONFIG:");
  Serial.print("czas stały=");
  Serial.println(czas_staly);
  Serial.print("czas los=");
  Serial.println(czas_los);
  delay(1000);
}

byte los;
unsigned long int t1,t2;
void loop()
{
  delay(czas_staly+rand()%czas_los);
  los=rand()%5;
  Serial.print("los=");
  Serial.println(los);

  digitalWrite(leds[los], HIGH);
  
  t1=millis();
  while(digitalRead(btns[los])==HIGH);//nic nie rób, czekaj na klik!
  t2=millis();
  digitalWrite(leds[los], LOW);
  
  Serial.print("refleks=");
  Serial.println(t2-t1);
  delay(2000);
  czas_staly=2*analogRead(A0);
  czas_los=2*analogRead(A1);
}

Warte podkreślenia jest użycie tablic – to zdecydowanie ułatwiło losowanie LED-a i sprawdzenie, czy odpowiedni przycisk został wciśnięty czy nie. 

Do zrobienia:

  • rozbudowa softu o monitorowanie czasu reakcji – jeśli przekroczymy pozostały czas, to gra powinna się automatycznie zakończyć (i wyświetlić jakieś podsumowanie, a potem – rozpocząć się od początku)
  • rozbudowa softu o zabezpieczenie przez „strategią małpy” – klikanie wszystkich przycisków, aż któryś się trafi i będzie bardzo krótki czas reakcji. To już troszkę trudniejsze zadanie
  • niby kto powiedział, że ma to być tylko gra refleks? warto pomyśleć także o grze memory – i zaprogramować sekwencje błysków (przygotowane wcześniej lub może losowo?), które należy powtarzać i zdobywać punkty. Można w setupie() zadać pytanie o wybór gry: reflex czy memory (wybór odczytujemy klikając jeden albo drugi przycisk) a wówczas loop() będzie uruchamiał odpowiedni kod…

(c) KG 2018

P.S. Radek (pracowity gimnazjalisto) – skontaktuj się ze mną emailem, czekam! KG

Dzień chłopaka… pomysły…

Chwila „dłubaniny” w ten wyjątkowy dzień 😉 W końcu każdy ma w sobie odrobinę dziecka, a co dopiero faceci ;-D Mam nadzieję, że wiecie, do czego to będzie służyło?

Teraz „tylko” 1) podłączyć, 2) oprogramować i… można rozpoczynać seryjną produkcję, która z pewnością okaże się światowym hit-em 😀

Do zobaczenia 20-tego marca (przypominam: 13-tego nie ma mnie w Bstoku, Fi-BOT odwołany).

(c) KG 2018